有问题就有答案
Q1:奥数题1/1×2×3+1/2×3×4+……+1/98×99×100
1/(1×2×3)+1/(2×3×4)+……+1/(98×99×100)=1/2*[(1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+……+1/(98*99-1/(99*100)]=1/2*[1/2-1/9900]=1/4-1/19800=(4950-1)/19800=4949/19800
Q2:1/1*2*3+1/2*3*4+...+98*99*100=
解答:1/(1*2*3)=(1/2)*[1/(1*2)-1/(2*3)]=(1/2)*[(1-1/2)-(1/2-1/3)]1/(2*3*4)=(1/2)*[1/(2*3)-1/(3*4)]=(1/2)*[(1/2-1/3)-(1/3-1/4)].........1/(98*99*100)=(1/2)*[1/(98*99)-1/(99*100)]=(1/2)*[(1/98-1/99)-(1/99-1/100)]∴ 1/1*2*3+1/2*3*4+...+98*99*100=(1/2)*[(1-1/2)-(1/2-1/3)]+(1/2)*[(1/2-1/3)-(1/3-1/4)]+........+(1/2)*[(1/98-1/99)-(1/99-1/100)]=(1/2)*(1-1/2)] -(1/2)(1/99-1/100)]=1/4-1/19800=4949/19800
Q3:1/1*2*3+1/2*3*4+1/3*4*5+......1/98*99*100的方法步骤
变形每一项比如1/1*2*3=1/2(1/1*2-1/2*3)1/2*3*4=1/2(1/2*3-1/3*4)1/3*4*5=1/2(1/3*4-1/4*5)。。。1/98*99*100=1/2(1/98*99-1/99*100)然后这些式子相加得1/1*2*3+1/2*3*4+1/3*4*5+......1/98*99*100=1/2(1/1*2-1/99*100)=4949/19800
Q4:1/1*2*3+1/2*3*4+…1/98*99*100=?
=1/2*(1/1*2-1/2*3)+1/2*(1/2*3-1/3*4)+……+1/2*(1/98*99-1/99*100) =1/2*(1/1*2-1/2*3+1/2*3-1/3*4+……+1/98*99-1/99*100) =1/2*(1/1*2-1/99*100) =4949/19800
Q5:1/1×2×3+1/2×3×4+.+1/98×99×100 简算,
1/123 1/234 .1/9899100=1/2[1/1*2-1/2*3] 1/2[1/2*3-1/3*4] .1/2[1/98*99-1/99*100]=1/2[1/1*2-1/2*3 1/2*3-1/3*4 .1/98*99-1/99*100]=1/2[1/1*2-1/99*100]=4949/19800
Q6:1/1*2*3+1/2*3*4+1/3*4*5+...+1/98*99*100等于多少?
an=1/2n+1/2(n+2)-1/(n+1)1/1*2*3+1/2*3*4+1/3*4*5+...+1/98*99*100 =(1/2+1/6-1/2)+(1/4+1/8-1/3)+...+(1/196+1/200-1/99) =0.5*(1+1/2+...+1/98)+0.5*(1/3+1/4+...+1/100)-(1/2+1/3+1/4+...+1/99)=0.5*(1+1/2+1/99+1/100)-1/2-1/99=4949/19800