1一6年级数学所有公式,数学1

文章 2年前 (2023) admin
0

数学1

1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形...

小学一年级到六年级的数学公式

每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
加数+加数=和
和-一个加数=另一个加数
被减数-减数=差
被减数-差=减数
差+减数=被减数
因数×因数=积
积÷一个因数=另一个因数
被除数÷除数=商
被除数÷商=除数
商×除数=被除数 小学数学图形计算公式
正方形 c周长 s面积 a边长 周长=边长×4 c=4a 面积=边长×边长 s=a×a
正方体 v体积 a棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a 长方形 c周长?s面积 a边长 周长=(长+宽)×2 c=2(a+b) 面积=长×宽 s=ab 4 长方体 v体积 s面积?a长?b 宽 h高 (1)表面积(长×宽+长×高+宽×高)×2 s=2(ab+ah+bh) (2)体积=长×宽×高 v=abh 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 平行四边形 s面积 a底 h高 面积=底×高 s=ah
梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 圆形 s面积 c周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏?半径 c=∏d=2∏r (2)面积=半径×半径×∏ 圆柱体 v体积?h高?s;底面积?r底面半径 c底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径
圆锥体 v体积 h高 s;底面积 r底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 非封闭线路上的植树问题主要可分为以下三种情形 ⑴如果在非封闭线路的两端都要植树,那么 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)

四年级全部公式

1:每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数2:1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数3:速度×时间=路程 路程÷速度=时间 路程÷时间=速度4:单价×数量=总价 总价÷单价=数量 总价÷数量=单价5:工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6:加数+加数=和 和-一个加数=另一个加数7:被减数-减数=差 被减数-差=减数 差+减数=被减数8:因子×因子=积 积 ÷ 一个因子=另一个因子9:被除数÷除数=商 被除数÷商=除数 商×除数=被除数小学数学图形计算公式1:正方形C:周长 S:面积 a:边长 周长=边长×4 C=4×a面积=边长×边长 S=a×a2:正方体V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a3:长方形C:周长 S:面积 a:边长周长=(长+宽)×2 C=2×(a+b)面积=长×宽 S=a×b4:长方体V:体积 S:面积 a:长 b:宽 h:高(1)表面积=(长×宽+长×高+宽×高)×2 S=2×(a×b+a×h+b×h)(2)体积=长×宽×高 V=a×b×h5:三角形S:面积 a:底 h:高面积=底×高÷2 S=a×h÷2三角形高=面积×2÷底 三角形底=面积×2÷高6:平行四边形S:面积 a:底 h:高面积=底×高S=a×h7:梯形S:面积 a:上底 b:下底 h:高面积=(上底+下底)×高÷2 S=(a+b)× h÷2▲8:圆形S:面积 C:周长 ∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r(2)面积=半径×半径×∏▲9:圆柱体v:体积 h:高 s:底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2(3)体积=底面积×高 (4)体积=侧面积÷2×半径▲10: 圆锥体V:体积 h:高 S:底面积 r:底面半径体积=底面积×高÷3 V=S底面积×h×1/3 总数÷总份数=平均数▲和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数▲和倍问题 和 差倍问题和÷(倍数-1)=小数 小数×倍数=大数(或者 和-小数=大数)差÷(倍数-1)=小数 小数×倍数=大数(或 小数+差=大数)▲倍数和因数0是自然数。在自然数中,最小的偶数是0,最小的奇数是1。一个数的最小倍数和它的最大因数相等。一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。什么是偶数?是2倍数的数叫做偶数。(能被2整除的数是偶数)什么是奇数?不是2倍数的数叫做奇数。(不能被2整除的数是奇数)2的倍数,个位上的数是2、4、6、8和0。2的倍数都是双数。5的倍数,个位上的数是5和0。۝个位上是0的既是2的倍数,又是5的倍数。3的倍数,它各位上数的和一定是3的倍数。注意:4的倍数一定是2的倍数,2的倍数不一定是4的倍数。什么是素数(或质数)?只有1和它本身两个因数,叫做素数(或质数)。什么是合数?除了1和它本身还有别的因数,叫做合数。注意:1的因子只有1个(是1)。1既不是素数,也不是合数。最小的素数是2,最小的合数4。没有最大的素数和合数。小学四年级数学下册一些定义、定律、计算公式和法则▲一、四则混和运算四则混合运算的顺序:在四则混合运算中,只有加减或只有乘除的运算,就从左至右依此计算;如果既有加减法又有乘除法,就要先算乘除,后算加减;如果有括号,就要先算括号里面的,再算括号外面的;如果既有小括号,又有中括号,就先算小括号里面的,再算中括号里面的,最后算括号外面的。二、乘除法的关系和运算律乘除法的关系:一个因子=积÷另一个因子已知两个因数的积与其中的一个因数,求另一个因数,用除法。除数=被除数÷商 被除数=商×除数 除法是乘法的逆运算 0不能作除数在有余数的除法里,被除数与商、除数、余数之间的关系:被除数=商×除数+余数 除数=(被除数-余数)÷商商=(被除数-余数)÷除数一个整数除以另一个不为0的整数,商是整数,没有余数,我们就说一个数能被另一个数整除。如:6÷2=3,就是6能被2整除,或者说2能整出6。乘法交换律:两个因数相乘,交换因数的位置,积不变,这就是乘法交换律。如果用a,b表示两个数,乘法交换律可以表示为:a×b=b×a乘法结合律:三个数相乘,先乘前两个数或者先乘后两个数,乘积不变,这就叫乘法结合律。如果用a,b,c表示3个数,乘法结合律可以表示为:(a ×b)×c=a×(b×c)乘法分配律:两个数的和与一个数相乘,可以先把两个数与这个数分别相乘,再将两个积相加,结果不变,这叫做乘法分配律。如果用如果用a,b,c表示3个数,乘法分配律可以表示为:(a+b) ×c= a ×c+ b×c简便计算的方法很多:如,利用上面的运算定律,可以使计算简便,还可以用凑整法,分解法,一个数连续减两个数,等于这个数减两个数的和,等都可以使计算简便。在简便计算时,要根据实际情况具体分析,该用什么方法才能使计算简便,就用什么方法,要灵活运用。因子与积的变化规律:一个因子不变,另一个因子扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。一个因子扩大(或缩小)几倍,另一个因子也扩大(或缩小)几倍,积就扩大(或缩小)两个因子扩大(或缩小)的倍数之积。如果一个因子扩大几倍,另一个因子缩小相同的倍数,积不变。三、小数的意义和性质小数的意义:像0.7,0.45,0.025,0.107……这样,用来表示十分之几、百分之几、千分之几……的数,叫做小数。小数的计数单位有0.1,0.01,0.001……每相邻两个计数单位间的进率是“10”。小数的读法:整数部分按照整数的读法来读,小数部分从左到右顺次读出每一个数位上的数。小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变。这叫做小数的性质。小数大小的比较:两个小数比大小,整数部分大的那个就大,整数部分相同,十分位元元上的数较大的那个就大,整数部分相同,十分位元元也相同,百分位上的数较大的那个数就大……以此类推。小数点位置移动引起小数大小的变化:小数的小数点向右(或左)移动一位、两位、三位……原来的小数就扩大(或缩小)10倍、100倍、1000倍……以此类推。小数的近似数:求小数的近似数,要根据题目的要求取近似数,即:保留整数,就要看十分位是几,要保留一位小数,就看百分位是几……然后按“四舍五入”的方法决定是舍还是入。把较大的数改写成用“万”或“亿”作单位的数,改写时,只要在“万”或“亿”位的右下角点上小数点,去掉小数末尾的0,再在数的后面加上“万”或“亿”字。如果小数的位数比较多,可以根据需要保留一定位数的小数。名数的改写:(1)分清是低级单位的名数变换成高级单位的名数,还是高级单位的名数变换成低级单位的名数,决定是乘进率还是除以进率。(2)分清改写的两个单位之间的进率是多少。(3)确定小数点应向哪个方向移动,移几位。四、小数加减法计算小数加减法,(1)相同数字要对齐,要从低位算起。(2)进行加法计算时,要注意“满十进一”,进行减法计算时,要注意遇到某数字上不够减,要向前一位借“1”.(3)注意在得数里对齐横在线的小数点,点上小数点。小数的四则混合运算和整数的四则混和运算方法相同,小数的简便运算与整数的简便运算方法也差不多。五、图形的认识由3条线段围成的图形叫做三角形。三角形有3条边,3个顶点,3个角。三角形具有稳定性。三角形的高与底互相垂直。任一一个三角形的两边之和都大于第三边。任一一个三角形的内角和都等于180度。根据三角形的内角大小,可以把三角形分为3类,即:锐角三角形,直角三角形,钝角三角形。3个角都是锐角的三角形叫做锐角三角形,有1个角是直角的三角形叫做直角三角形,有1个角是钝角的三角形叫做钝角三角形。特殊三角形:等腰三角形,等边三角形(正三角形)。两边相等的三角形叫做等腰三角形。等腰三角形的两腰相等,两底角相等。3条边都相等的三角形叫做等边三角形。等边三角形的3个内角都是60度。两组对边分别平行的四边形,叫做平行四边形。平行四边形的两组对边分别相等。平行四边形的对角相等。平行四边形的高是和底边垂直的线段。平行四边形还具有不稳定性的特点。一组对边平行,另一组对边不平行的四边形,叫做梯形。平行的一组对边叫做梯形的底,不平行的一组对边叫做梯形的腰。通常把较短的底叫上底,较长的底叫下底。梯形的高是和两底都垂直的线段。梯形也具有不稳定性的特点。两腰相等的梯形叫做等腰梯形。六、条形统计图求平均数的方法:(1)移多不少。(2)先合后分。平均数=总数量÷总份数

数学三到六年级的所有公式

小学数学定义定理公式
定义定理公式
三角形的面积=底×高÷2.公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度.
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积.公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh
圆锥的体积=1/3底面×积高.公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
分数的乘法则:用分子的积做分子,用分母的积做分母.
分数的除法则:除以一个数等于乘以这个数的倒数.
单位换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1吨=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公顷=10000平方米 1亩=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
数量关系计算公式方面
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
小学数学定义定理公式(二)
一、算术方面
1.加法交换律:两数相加交换加数的位置,和不变.
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变.
3.乘法交换律:两数相乘,交换因数的位置,积不变.
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5.
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0除以任何不是0的数都得0.
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8.方程式:含有未知数的等式叫方程式.
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15.分数除以整数(0除外),等于分数乘以这个整数的倒数.
16.真分数:分子比分母小的分数叫做真分数.
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.
18.带分数:把假分数写成整数和真分数的形式,叫做带分数.
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.
20.一个数除以分数,等于这个数乘以分数的倒数.
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数.

4至6年级的数学公式

数学公式
1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 加数+加数=和 和-一个加数=另一个加数
7 被减数-减数=差 被减数-差=减数 差+减数=被减数
8 因数×因数=积 一个因数=积÷另一个因数
9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长
周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4 长方体
V:体积 s:面积 a:长 b:宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高 s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1) 株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)

版权声明:admin 发表于 2023年3月21日 上午8:04。
转载请注明:1一6年级数学所有公式,数学1 | 热豆腐网址之家

相关文章