课程导报官网网址,两道七年级下册的数学题(课程导报上34期7.2(2)测试题)!!~~~1.在△ABC中,∠B=∠BAC,∠BAC的外角平分线交BC的延长线于点D.若∠ADC=2/1∠CAD,则∠ABC的度数为( ).2.已知∠MON=90°,点A,B分别在射线OM,ON上
有问题就有答案
两道七年级下册的数学题(课程导报上34期7.2(2)测试题)!!~~~1.在△ABC中,∠B=∠BAC,∠BAC的外角平分线交BC的延长线于点D.若∠ADC=2/1∠CAD,则∠ABC的度数为( ).2.已知∠MON=90°,点A,B分别在射线OM,ON上
1)36°(需要过程吗?)2)不变,45° 将图中的各角分别用数字标注,说起来方便一点 ∠MON为∠1 ∠ACB为∠2 ∠OAC为∠3 ∠CAB为∠4 ∠ABO为∠5 ∠OBC为∠6 ∠ABN被角平分线平分的两个角分别为∠7,∠8 标注完毕,有 ∠3...
课程导报数学人教七年级上21
课程导报数学 人教 2010——2011年 第21----26期 期末复习合刊的答案
求文档:《课程导报》2010
第9期
期中综合测试题
一、精挑细选,一锤定音
1.D.2.D.3.B.4.D.5.D.6.B.7.A.8.A.9.B.10.C.
二、慎思妙解,画龙点睛
11. .
12.答案不唯一,如∠A=∠C,∠B=∠D,OD=OB,AB‖CD.
13.-1. 14.50°或80°.15.点 .16.等边.
17.22.5°.18.①②③.
三、过关斩将,胜利在望
19.(1) ;(2) .
20.证明:∵AB=BC,BD⊥AC,∴∠ABD=∠DBC.
∵DE‖BC,∴∠EDB=∠DBC.∴∠EDB=∠ABD.∴ED=EB.
∴△BDE是等腰三角形.
21.(1)A′( , ),B′( ,0);(2)3 .
22.Rt△AEF≌Rt△FBA.提示:可用HL证明.
23.(1)过A作AE⊥MN,垂足为点E.
在Rt△BCO中,∵∠BOC=30°,∴BO=2BC=6km.
∵AB=10km,∴OA=16km.∴AE=8km.
(2)提示:作出点A关于MN的对称点K,连接BK交MN于点P,则点P就是新开发区的位置,画图略.
24.(1)通过猜想、测量或证明等方法不难发现∠BQM=60°.
(2)成立,证明:
∵△ABC为等边三角形,
∴AB=AC,∠BAC=∠ACB=60°,
∴∠ACM=∠BAN.
在△ACM和△BAN中,
∴ΔACM≌ΔBAN,
∴∠M=∠N,
∴∠BQM=∠N+∠QAN=∠M+∠CAM=∠ACB=60°.
四、附加题
25.(1)∠EDF=∠DEF.
证明:过点C做CH⊥AC交AN的延长线于点H.
∵∠BAC=90°,∴∠CAH+∠BAM=90°.
∵AM⊥BD,∴∠DBA+∠BAM=90°.∴∠CAH=∠DBA.
又∵AC=AB,∴△BDA≌△ACH.
∴∠BDA=∠H,CH=AD.
又∵AD=CE,∴CH=CE.
∵AB=AC, ∠BAC=90°,
∴∠ACB=45°, ∴∠HCN=45°, ∴∠ECN=∠HCN.
∴△ECN≌△HCN.∴∠H=∠NEC.∴∠BDA=∠NEC.
∵∠BDA=∠EDF, ∠NEC=∠DEF,
∴∠EDF=∠DEF.
(2) ∠EDF=∠DEF.证明方法同(1).
(3) ∠EDF=∠DEF. 证明方法同(1).
26.(1)① ; ;
②所填的条件是: .
证明:在 中,
.
, .
又 , .
又 , ,
.
, .
又 , .
(2) .
第10期
14.1变量与函数(1)
1.y=80x;y,x;80.2.C.
3.(1)S=x(10-x),S和x是变量,10是常量;
(2)α=90°-β,α和β是变量,90是常量.
4.(1)y= 4(6-x);
(2)变量为x,y,常量为4,6.
14.1变量与函数(2)
1.D.2.x≥0且x≠3;2.
3.21,22,m=19+n,1≤n≤25
4.(1)b=175-0.8(a-1)=175.8-0.8a,其中a是自变量,b是a的函数;
(2)当a=12时,b=175.8-0.8×12=166.2(次/分),所以12岁的少年能承受的每分钟心跳的最高次数是166.2次;
(3)当a=50时,b=175.8-0.8×50=135.8(次/分).因为148>135.8,所以他可能有危险.
14.1变量与函数(3)
1.B.2.D.3.C.
4.(1)2×4=8(cm);(2)a= ×6×8=24.
14.1变量与函数(4)
1.y=21x+0.5.2.D.
3.(1)y=0.6x+331,图象略;
(2)当x=22时,y=344.2(m/s) .
4.(1)5h;(2)Q=42-6t(0≤t≤5);(3)24L;
(4) ∵加水后水箱里的水可供作业11-5=6(h),
∴行驶路程6×50=300(km).
14.1测试题
基础巩固
一、精挑细选,一锤定音
1.C.2.C.3.D.4.D.5.B.6. B.
二、慎思妙解,画龙点睛
7.30、2,t,v,t,15.
8. ; .
9.h=3n+0.6,1≤n≤17且n取整数.
10.②.
三、过关斩将,胜利在望
11.(1)y=24000+4000x,且x为正整数,
(2)当x=5时,y=44000(棵).
12.由题意可知,x秒后两车行驶路程差为25x-20x=5x,
所以y与x的函数解析式为y=500-5x (0≤x≤100).
用描点法画图:
13.(1)小明出发3h时他距家最远,为30km;
(2)15+15× =22.5(km);
(3)线段AB和EF上各有一个表示距家12km的点.当在AB上时,12÷15=0.8(h);当在EF上时,4+(30-12)÷15=5.2(h),即小明出发0.8h或5.2h时,他距家12km.
14.(1)弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是所挂物体质量的函数;
(2)24cm;18cm;
(3)由表中观察到弹簧原长18cm,以后每增加1kg,长度伸长2cm,这样的变化可以表示为y=2x+18,当x=7时,y=2×7+18=32(cm).
能力提高
1.y=10+32x.2.40;10.3.C.
4.(1)在0到2km内都是5元;2km后,每增加0.625km加1元(答案不唯一);
(2)2+0.625×(13-5)=7(km).
5.(1) 根据题意可知:y=4+1.5(x-2) , ∴ y=1.5x+1(x≥2) ;
(2)依题意得7.5≤1.5x+1<8.5,∴ ≤x<5.
第11期
14.2一次函数(1)
1.A.
2.C.
3.(1)m-2≠0,即m≠2;
(2)m-2<0,即m<2;
(3)m-2>0,即m>2.
4.(1)依题意可设y=kx(k≠0).
又当x=6时,y=3.6,所以k=0.6,所以解析式为y=0.6x.
(2)当y=21时,0.6x=21,x=35.
所以点燃35分钟后可燃烧光.
(3)略.
5.由题可知,△POM的OM边上的高为3,所以点P的纵坐标为3或者-3.
将y=3或y=-3代入函数解析式y=3x中,可得x=1或-1.
故存在这样的点P,点P的坐标为(1,3)或(-1,-3).
14.2一次函数(2)
1.A.2.5x+10.
3.(1)-3= +b,解得b=-5;
(2)当x=-2时,y= -5=-6,所以点A在此函数的图象上.
4.(1)y=105-10t,是一次函数;
(2)蚊香燃尽时,即y=0,即105-10t=0,解得t=10.5,所以该盘蚊香可使用10.5h;
(3)0≤t≤10.5.
5.(1)2;(2)y=2x+30;
(3)由2x+30>49,得x>9.5,即至少放入10个小球时有水溢出.
14.2一次函数(3)
1.B.2.D.
3.答案不唯一,如y=2x+1.
4.y=1.5x+4.
5.(1)∵s= •OA•|y|,而点P在第一象限,且在直线y=-x+6上,∴s= ×5×(-x+6).即s= x+15;
(2)自变量x的取值范围是0<x<6.
当x=0时s=15;当x=6时s=0,
于是连接点(0,15)和点(6,0)的线段(不包括端点)即是函数s的图象.图略.
(3)△OPA的面积为大于0且小于15的值,故可以为5,但不可以为15,20,故小明的说法有误.
14.2一次函数(4)
1.A.2.(0,-1).3.13.4.y=x+3或y=-x+11.
5.(1)因为20÷8=2.5,所以进气管每分钟排进气体2.5t.
因为[(18-8)×2.5-(40-20)]÷10=0.5,所以出气管每分钟排出气体0.5t;
(2)因为40÷0.5=80,所以储存罐装满后,经过80min又被排空;
(3)y=
14.2 测试题
基础巩固
一、精挑细选,一锤定音
1.D.2.A.3.D.4.A.5.C.6.B.
二、慎思妙解,画龙点睛
7.答案不唯一,如y=x+3.
8. , .
9.y=-x+8,6或10.
10.10cm.
三、过关斩将,胜利在望
11.(1)y=x+3,图象略;(2) .
12.(1)y=3x+6;(2)9;(3)a= .
13.(1)y=-20x+1000(0≤x≤50);
(2)1000.
14.明显地,y与x不符合正比例函数.假设y与x是一次函数关系,设此一次函数解析式为y=kx+b(k≠0).将(15,25),(20,20)代入该函数解析式,则有 解得k=-1,b=40.故此一次函数的解析式为y=-x+40.
将(30,10)也代入此函数解析式中,也符合.
故y与x之间是一次函数关系,函数解析式是y=-x+40.
当x=25时,日销售量为15件.
15. (1)当0≤x≤20时,y与x的函数解析式是y=2x;当x>20时,y与x的函数解析式是y=2×20+2.6(x-20),即y=2.6x-12;
(2)因为小明家四、五月份的水费都不超过40元,六月份的水费超过40元,所以
把y=30代入y=2x中,得x=15;
把y=34代入y=2x中,得x=17;
把y=42.6代入y=2.6x-12中,得x=21.
所以15+17+21=53.
答:小明家这个季度共用水53m3.
能力提高
1.C.
2.沿y轴向上平移8个单位长度或沿x轴向右平移4个单位长度.
3. ,2L.
4.(1)3;(2)3条; (答案不唯一).
5.(1)S甲=3t,S乙=2t;(2)4km;(3)6km.
第12期
14.3用函数观点看方程(组)与不等式(1)
1.B.2.x=-1.3.x=3.
4.(1)由2x+3=9可得y=2x-6,画函数y=2x-6的图象,看出图象与x轴的交点为(3,0),所以方程2x+3=9的解是x=3.
(2)原方程化为2x-2=0,画出直线y=2x-2,从图象可以看出直线与x轴的交点为(1,0),所以方程5x+3=3x+5的解是x=1.
5. (1) A(0,1),B(0,-4);(2) C( ,0);(3) .
14.3用函数观点看方程(组)与不等式(2)
1.B.2.x<0.3.x≥1.
4.(1)图略;
(2)由图可以看出,它们交点的坐标为 ,所以当x= 时,y1=y2;当x> 时,y1<y2;当x< 时,y1>y2.
5.(1)x≥2;
(2)从图象可知,当x>-1时,直线L1表示的一次函数的函数值大于0;当x> 时,直线L2表示的一次函数值大于0.所以当x> 时,L1,L2表示的两个一次函数的函数值都大于0.
14.3用函数观点看方程(组)与不等式(3)
1. 2.D.3.A.
4.图略,(1)由图象可知:方程组 的解为
(2)由图象可知:不等式 的解集为 .
5.(1)解方程组 所以点P的坐标为( ,2).
(2)在函数y=- x+6中,令x=0,得y=6;令y=0,即- x+6=0,得x=8.
所以点A的坐标为(8,0),点B的坐标为(0,6).
在函数y= x-2中,令x=0,得y=-2.所以点C的坐标为(0,-2).
所以BC=8,OA=8,过点P作PD⊥y轴.
S△PCA=S△ABC-S△PBC= - .
14.4课题学习 选择方案
1.大于4件.
2.(1) y1=5x+1500,y2=8x;
(2)当光盘为500个时同样合算,当光盘少于500个时选乙公司合算,当光盘多于500个时选甲公司合算.
3.((1)根据题意,得y=600x+500(17-x)+400(18-x)+800(x-3)=500x+13300(元);
(2)∵500>0,∴当运往甲地的机器最少时,y的值最小.即B地的15台机器全部运往甲地,A地运往甲地3台,其余全部运往乙地,此时,y=500×3+13300=14800(元)为最少费用.
4.(1)设用A型车厢x节,则用B型车厢(40-x)节,总运费为y万元,根据题意,得y=0.6x+0.8(40-x)=-0.2x+32(0≤x≤40,且x为整数).
(2)根据题意,得
解得24≤x≤26,
所以共有三种安排方案:
24节A型车厢和16节B型车厢;
25节A型车厢和15节B型车厢;
26节A型车厢和14节B型车厢.
(3)因为-0.2<0,所以当x=26时,总运费最省,
这时y=-0.2×26+32=26.8(万元).
即安排A型车厢26节,B型车厢14节装货运费最省,最省运费为26.8万元.
14.3~14.4测试题
基础巩固
一、精挑细选,一锤定音
1.D.2.B.3.C.4.B.5.A.6.B.
二、慎思妙解,画龙点睛
7.x>1.8.x= .9.x=4.10.8.
三、过关斩将,胜利在望
11.画图略,(1) ;(2) ;(3) .
12.画图略,(1)两图象的交点坐标坐标为(1,1);(2) ;(3) .
13.(1)∵ 在直线 上,
∴当 时, .
(2)解是
(3)直线 也经过点 .
∵点 在直线 上,
∴ ,∴ .
∴直线 也经过点 .
14.(1): ,
: ;
(2)当一个月内上网时间少于500min时,选择合算;
当一个月内上网时间等于500min时,两种都可以;
当一个月内上网时间多于500min时,选择合算;
15.(1)设商店购进电视机x台,则购进洗衣机(100-x)台,根据题意,得
解不等式组,得 ≤x≤ .
即购进电视机最少34台,最多39台,商店有6种进货方案.
(2)设商店销售完毕后获利为y元,根据题意,得:
y=(2000-1800)x+(1600-1500)(100-x)=100x+10000.
∵100>0,∴当x最大时,y的值最大.
即 当x=39时,商店获利最多为13900元.
能力提高
1.16.2.平行,没有,无解.3.1
人教版2010~2011课程导报七年级17期答案
1、把200千米的水引到城市中来,这个任务交给了甲,乙两个施工队,工期50天,甲,乙两队合作了30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比...