ai技术员的基础知识
1、做算法1.1 日常工作所有人都想做算法,那么,说到底,在做算法到底是干什么?真正的算法工程师最基本的日常工作其实是:读论文&实现之——确认最新论文中的阐述是否真实可重现,进一步确认是否可应用于本企业的产品,进而将其应用到实践中提升产品质量。1.2 必备能力既然日常工作首先是读别人论文。那么,必不可少,作为算法工程师得具备快速、大量阅读英语论文的能力。在计算机科学,尤其是人工智能、机器学习、深度学习这几个当今世界最热门的领域里,大家都在争分夺秒地抢占制高点,根本不能容忍耽搁时间。如果要做算法,平均而言,大致要保持每周读一篇最新论文的频率。1.3 理论联系实际,将学术论述与产品、业务结合的能力一般来说,在大企业里做到真正的算法工程师/科学家,也就不需要自己去动手开发产品了。但做 demo/prototype 还是不能避免的。算法工程师,可不是用别人写好的工具填几个参数去运行就可以的,需要负责实际业务问题到数学模型的抽象,并能够将他人最新成果应用到业务数据上去。说得更通俗一点,就算是用别人写的工具或框架,做算法的,也得是i)第一拨、最前沿那批试用者,或者ii)工具最新玩法的发明者。2. 做工程2.1 日常工作相对于算法的创新和尖端,做工程要平实得多。这一角色比较有代表性的一种岗位就是:机器学习工程师(或戏称调参工程师)——他们使用别人开发的框架和工具,运行已有算法,训练业务数据,获得工作模型。做工程也得读论文,不过和做算法不同,做工程读论文的一般目的不是尝试最新方法,而是用已知有效的方法来解决实际问题。2.2 做工程,「机器学习」学到多深够用当然,既然是有领域的程序员,在专业上达到一定深度也是必要的。虽然做工程一般要使用现成技术框架,但并不是说,直接把算法当黑盒用就可以做一名合格的“调参”工程师了。把算法当黑盒用的问题在于:黑盒能够解决问题的时候,使用方便,而一旦不能解决问题,或者对质量有所要求,就会感觉无所适从。作为程序员、工程人员,想用机器学习算法解决实际问题,就得对算法有一定程度的掌握,此外对于数据处理和模型验证,也需具备相应知识。3. 做数据做数据并非数据的清洗和处理——大家可以看到做工程的岗位,有一部分工作内容就是ETL和处理数据。此处说的做数据是指数据标注。3.1 标注数据的重要性虽然机器学习中有无监督学习,但在实践领域被证明有直接作用的,基本上还都是有监督模型。近年来,深度学习在很多应用上取得了巨大的成功,而深度学习的成功,无论是图像、语音、NLP、自动翻译还是AlphaGo,恰恰依赖于海量的标注数据。AI技术员需要学什么?无论是做ML还是DL的工程师,都共同确认一个事实:现阶段而言,数据远比算法重要。
自学人工智能需要学那些专业知识
首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累;然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少;人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。
人工智能这个专业是干什么的
谢谢邀请!作为一名教育领域的工作者,同时大数据和机器学习也是我的主要研究方向,所以我来回答一下这个问题。随着人工智能领域的发展,整个科技行业对于人工智能专业人才的需求量在持续加大,传统的研究生教育已经不能满足巨大的市场需求,所以人工智能人才的教育必然会向本科教育下沉,目前一小部分教育资源比较丰富的高校(以双一流高校为主)陆续开设了人工智能专业。人工智能的本质是获取知识、创造知识并合理运用知识达到某种目的的能力,而且是一种通用的能力。从体现结构上来说,人工智能系统有三个大的组成部分,分别是感知系统、智力系统和行动系统,当然还离不开环境的支持。感知系统和行动系统需要物联网的支持、智力系统需要大数据和云计算的支持,所以人工智能是一个典型的交叉学科。从知识体系结构上来说,人工智能目前的研究内容集中在六大方面,包括计算机视觉、自然语言处理、机器学习、机器人学、自动推理和知识表示,目前计算机视觉领域和自然语言处理领域已经成长了一批具有较强竞争力的科技企业。从人工智能专业的课程设置来看,重点包括三个部分,其一是基础学科,重点是数学和物理;其二是计算机基础知识,重点是操作系统、计算机网络、算法设计和数据结构等内容;其三是人工智能基础知识,涉及到人工智能基础概念、推理和求解、知识表示、感知、通讯和行动等几个大的部分。虽然目前人工智能领域的热度比较高,一部分智能体也开始走进生产环境,但是人工智能行业依然处在初期阶段,还有大量的课题有待攻克,所以选择人工智能专业最好读一下研究生。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言!
人工ai管理知识
人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用--机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统等。人工智能(Artificial Intelligence)是研究解释和模拟人类智能、智能行为及其规律的一门学科。其主要任务是建立智能信息处理理论,进而设计可以展现某些近似于人类智能行为的计算系统。AI作为计算机科学的一个重要分支和计算机应用的一个广阔的新领域,它同原子能技术,空间技术一起被称为20世纪三大尖端科技。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
什么是人工智能人工智能定义人工智能主要成果
1996年2月10~17日, GARRY KASPAROV以4:2战胜“深蓝” (DEEP BLUE)。
1997年5月3~11日, GARRY KASPAROV以2.5:3.5输于改进后的“深蓝”。
2003年2月GARRY KASPAROV 3:3战平 “小深”(DEEP JUNIOR)。
2003年11月GARRY KASPAROV 2:2战平 “X3D德国人” (X3D-FRITZ)。 采用 $模式识别引擎,分支有2D识别引擎 ,3D识别引擎,驻波识别引擎以及多维识别引擎
2D识别引擎已推出指纹识别,人像识别 ,文字识别,图像识别 ,车牌识别;驻波识别引擎已推出语音识别;3D识别引擎已推出指纹识别玉带林中挂(玩游智能版1.25) 自动驾驶(OSO系统)
印钞工厂(¥流水线)
猎鹰系统(YOD绘图) 以知识本身为处理对象,研究如何运用人工智能和软件技术,设计、构造和维护知识系统
专家系统
智能搜索引擎
计算机视觉和图像处理
机器翻译和自然语言理解
数据挖掘和知识发现