ai自学免费教程,自学PS,AI,CDR,indesign,大概要学多久

文章 2年前 (2023) admin
0

自学PS,AI,CDR,indesign,大概要学多久

如果自学,每天都学8个小时的话,这些软件你至少要学3个月能基本掌握。这里面有个技巧,就是PS跟AI、ID界面相似,CDR和AI、ID原理相同,而PS和CDR是自学入门最快的,所以先学PS和CDR,再学AI ID会相对容易些。

应该怎样一步步地学习人工智能

人工智能本质就是使用机器学习算法,通过数据挖掘来训练出最优的算法模型,然后逐渐应用到人们的日常生活中,提升人们的生产效率,我读研的时候就是数据挖掘专业,这里分享一下我当初学习机器学习算法的经验。可以先从机器学习实战和统计学习方法这两本书入手,先初步了解机器学习应用点新手刚开始学习机器学习算法,建议可以先看《机器学习实战》这本书,这本书讲解了机器学习一些基础算法,同时将算法应用到一些比较简单的场景,算法核心思想通过python语言去实现了部分算法,新人在入门机器算法时,肯定还是希望能够结合代码来理解算法的核心思想,这样以后使用算法时,也能快速编写出来。《统计学习方法》这本书就是纯讲基础机器学习算法的理论了,SVM、线性回归、决策树、K-means等算法。这些算法都是为未来你研究其他更深奥的机器学习算法做准备,比如神经网络。你可以仔细阅读《统计学习方法》这本书,它讲解的概念都很基础,也没有过多的数学公式,这对于新人理解来说,有很大的帮助。去学习吴恩达老师的机器学习视频,通过视频进一步了解机器学习算法说实话,只从书上看一些机器算法还不够,仅仅是对一些机器学习算法基础概念了解。你在看书的时候,肯定有一些不懂的地方。看完书籍之后,我推荐你去看吴恩达老师的机器学习课程,在网易公开课上面就可以查到。我个人之前学机器学习算法的时候,看了一些。个人感觉吴恩达老师讲解的非常详细,同时会结合具体的实例来讲解。当时他在课上演示了使用机器学习算法来进行无人驾驶的实验,当时我就觉得原来机器学习算法这么厉害,还可以这样。你在听课的同时,希望你能够仔细的记录机器学习笔记,有些地方需要你下课之后,再继续查阅资料学习。学习了机器学习算法,可以开始通过具体项目实战来加强自己在机器学习方面的经验,对于大学生来说,参加机器学习算法类比赛是一种锻炼机器学习项目很好的,现在很多互联网大厂也比较看重你的比赛经历。比较被认可的机器学习算法类比赛有,天池大数据竞赛、DataCasle、Kaggle这三种。天池大数据竞赛是阿里巴巴进行主办,主要结合阿里的一些场景和数据,来吸引更多同学加入,如果你能够在天池大数据竞赛拿到奖,阿里对于这个奖还是非常认可的。当然,DataCasle和Kaggle的比赛经历也不错,对于新人,项目经验对于你来说,会更加重要。总结新人进入人工智能领域,可以先从看书入门,在对机器学习算法有了一定的基础了解之后,可以去看相关的机器学习视频,跟着视频教程一起实践,更深一步的加深自己的理解。最后,可以去参加一些机器学习算法类比赛,增加自己的项目经验。我是Lake,专注大数据技术原理、人工智能、程序员经验分享,我会持续分享在大数据和人工智能方面的内容,希望你能点赞转发或者关注我,和你一起进步。如果你有任何问题,也欢迎关注私信我,我会在第一时间进行解答。

人工智能是不是特别难啊,真的能学吗

恰巧做过计算机视觉方向的开发,也在公司负责过经典机器学习相关的一些项目。一般情况,我都会先抛出问题的答案,再做详细的解答。但这个问题。。。。。诚然,人工智能方向并不是特别难,当然也可以学。但,这个“学”,我并不清楚提主所说的,是要达到什么样的程度,衡量的量化标准是什么。我把深度学习从业者的大致几个层次和对应的知识技能要求分别列在这里,提主可以根据自己的期望和对应的门槛来决定,自己是否要选择深入学习,是否适合自己。1.简单理解机器学习原理,以工程开发和落地为主。这类技术人员往往是由技术转型,或有其他学科理论知识限制,大多从事算法的工程落地和产品化。更多的是直接用第三方成熟或开源的半成品模型,来解决自己公司产品的落地问题。比如:高数,统计,通信编码等,理论欠缺。他们会由算法部门提供基本模型,或直接调用百度,腾讯,face++等厂商提供的开放平台api,或半成熟方案定制产品。这可能是这类工程落地人员比较喜欢的网站。2.具备机器学习相关的比较扎实的各种知识理论,熟悉各种主流模型和主流算法。同时也熟练框架和模型开发。大部分人具有硕士学位,关注解读主流峰会的相关论文和最新技术发展。这类技术人员往往在大公司的算法部门。他们的主要工作就是针对已有模型结合自身业务目标,做模型的开发/迁移/魔改/调参。个别时候,可能会把效果较好的论文描述落地成算法模型。当然,大部分时候,他们的工作还是前者。所以,也有人戏称,调参侠。当然这部分同学的理论知识已经比较扎实。其实对于能沉下心的同学来说,几本通信理论和几本数学统计,几本机器学习XX导论的书,学到这个程度,完全不难。这里推荐2本好书给提主。我发现凡是,XXX导论的书,一般讲的都不仅仅是导一下。还有深度学习的一般概念书:3. 完全精通深度学习相关各种生态知识,理论知识已经不再构成研究该领域的任何门槛。这类大神,往往都具备高学历,高智商,国际名校背景。在一流公司担任算法研究。cvpr这类会议,经常会看到他们的论文。比如,各种主流落地开源模型的作者。这里不具体列出了。提主可以根据自己期望的程度和知识要求,衡量下自己是否适合这个方向。不得不说,想在这个领域有所建树,数学确实是个非常重要的基础。所以大多算法研究岗对学历的硕士要求,确实可以理解。当然,从行业发展来看。懂深度学习的模型落地工程人员,才是市场需求量最大的。其次是模型的开发人员,也就是第二种。如果希望在这个算法领域做工程落地,是没有太大难度的。如果是做,有理论的调参侠,可能要自己沉下心,学习一些数学知识,也不算太难。最近正准备做一些,零基础入门人工智能相关的视频教程。每天3-5分钟,以最简单有趣的,带爱好者实操入门。如果有任何相关的问题,欢迎留言与我讨论。谢谢。

版权声明:admin 发表于 2023年2月18日 下午9:03。
转载请注明:ai自学免费教程,自学PS,AI,CDR,indesign,大概要学多久 | 热豆腐网址之家

相关文章