人工智能软件有哪些,除了换脸外,AI还有什么前沿的应用

文章 2年前 (2023) admin
0

除了换脸外,AI还有什么前沿的应用

最近的大热点漫威被玩坏了,网友将雷神索尔的脸替换为演员徐锦江;类似行为还有将徐锦江、迪丽热巴替换为海王亚瑟及其母亲。以AI技术为基础,实现对人类面目的再创作,这种技术还广泛应用于我们所熟知的视频“AI抠图”“P图”。所谓“AI换脸”技术,是基于人工智能的人体图像合成技术生成的假脸(通称DeepFake),也就是在图像或视频中把一张脸替换成另一张脸。上述明星被换脸的遭遇背后,是“AI换脸”工具降低了“换脸”门槛。其实早在几年前国外就已经有人成功用AI技术进行人脸交换,这项技术还被滥用于视频、视频合成上。类似DeepFakes的工具可以让普通人也能完成原本技术门槛很高的视频“换脸”工作,使得明星、公众人物莫名遭受“被换脸”。从某种程度上说“AI换脸”为视频、影视等行业提供了便利,大大提高了后期效率,甚至能够降作成本。这正是技术的可贵之处。但是,从另外一个层面上讲,过于便捷的大量“AI换脸”工具降低了换脸行为的操作门槛,甚至于被有心之人利用或从事不法行为。曾有网友提出这样的可能,某人试图杀害他人,只需将自己的脸替换为受害者的脸,自导自演完成“”行为,就能够伪装成被害者“”的假象,这种假设细思极恐。我国已经注意到了“AI 换脸”的潜在风险,较多观点认为换脸行为侵犯了“肖像权”,其实“人格权”的表述更确切。去年8月27日,十三届全国人大常委会第五次会议初次审议民法典各分编草案,草案包括物权编、合同编、人格权编、婚姻家庭编、继承编、侵权责任编等6个分编。当时,“人格权”因独立成编引发关注。今年4月20日,提交十三届全国人大常委会十次会议审议的民法典人格权编草案二审稿对“AI换脸”、人体基因科学、声音权等人格权新问题予以回应。其中拟增加规定:任何组织或者个人不得以利用信息技术伪造的侵害他人的肖像权。同时规定,其他人格权的许可使用和自然人声音的保护,参照适用草案对于肖像权的有关规定。草案公开征求意见期间,有的部门提出,利用信息技术手段“深度伪造”他人的肖像、声音,不仅侵害自然人的人格权益,严重的还可能造成恶劣的社会影响,危害和社会公共利益,建议法律对深度伪造技术带来的“换脸”等问题予以回应。技术本身并无对错,关键在于如何使用,期待尽快相应的法律法规,以规范AI在人类生产生活中的各种边界。在相关法律没有健全之前,笔者不认为到了展现“AI换脸”的时候。

你想象中的人工智能是什么样子的

1.什么是人工智能人工智能(Artificial Intelligence):它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年由约翰.麦卡锡首次提出,当时的定义为“制造智能机器的科学与工程”。人工智能目的就是让机器能够像人一样思考,让机器拥有智能。时至今日,人工智能的内涵已经大大扩展,是一门交叉学科。2.人工智能的层次结构基础设施层:回顾人工智能发展史,每次基础设施的发展都显著地推动了算法层和技术层的演进。从20世纪70年代的计算机的兴起,80年代计算机的普及,90年代计算机运算速度和存储量的增加,互联网兴起带来的电子化,均产生了较大的推动作用。到21世纪,大规模集群的出现,大数据的积累,GPU与异构/低功耗芯片兴起带来的运算力的提升,促成了深度学习的诞生,点燃了人工智能的爆**潮,其中海量的训练数据是人工智能发展的重要燃料。算法层:机器学习是指利用算法使计算机能够像人一样从数据中挖掘出信息,而深度学习作为机器学习的一个子集,相比于其他学习方法,使用了更多的参数、模型也更复杂,从而使得模型对数据的理解更加深入也更加智能。计算机视觉:计算机视觉的历史可以追溯到1966年,人工智能学家Minsky在给学生布置的作业中,要求学生通过编写一个程序让计算机告诉我们它通过摄像头看到了什么,这也被认为是计算机视觉最早的任务描述。计算机视觉借鉴了人类看东西的方法,即“三维重构”与“先验知识库”。计算机视觉除了在比较成熟的安防领域外,也应用于金融领域的人脸识别身份验证、电商领域的商品拍照搜索医疗领域的智能影像诊断、机器人/无人车上作为视觉输入系统等。语音处理:让机器学会“听”和“说”,实现与人类的无障碍交流一直是人工智能、人机交互领域的一大梦想。1920年生产的“Radio Rex”玩具狗可能是世界上最早的语音识别器,第一个真正基于语音识别系统出现在1952年,AT&T贝尔实验室开发的Audrey的语音识别系统,能够识别10个英文数字,正确率高达98%。比如Apple Siri,Echo等。自然语言处理:人类的日常社会活动中,语言交流是不同个体间信息交换和沟通的重要途径。对机器而言,能否自然的与人类进行交流、理解人类表达的意思并作出合适的回应,被认为是衡量其智能程度的一个重要参照。规划决策系统:人工智能规划决策系统的发展,一度是以棋类游戏为载体的。比如,AlphaGo战胜李世石,Master对顶级选手取得60连胜,机器人,无人车。3. 人工智能应用场景3.1. 语音处理• 语音处理主要是自动且准确的转录人类的语音。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理以及后期的语音合成。– 前端处理:说话人声检测,回声消除,唤醒词识别,麦克风阵列处理,语音增强等。– 语音识别:特征提取,模型自适应,声学模型,语言模型,动态解码等。– 语义识别和对话管理:更多属于自然语言处理的范畴。– 语音合成:文本分析、语言学分析、音长估算、发音参数估计等。• 应用:包括医疗听写、语音书写、电脑系统声控、客服等。• 未来:真正做到像正常人类一样,与他人流畅沟通,自由交流,还有待时日。3.2. 计算机视觉• 计算机视觉指计算机从图像中识别出物体、场景和活动的能力,包含图像处理、识别检测、分析理解等技术。– 图像处理:去噪声、去模糊、超分辨率处理、滤镜处理等。– 图像识别:过程包括图像预处理、图像分割、特征提取、判断匹配,可以用来处理分类、定位、检测、分割问题等。– 图像理解:本质是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答等。• 应用:– 医疗成像分析被用来提高疾病的预测、诊断和治疗。– 在安防及监控领域被用来指认嫌疑人。– 在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多信息。• 未来:计算机视觉有望进入自主理解、分析决策的高级阶段,真正赋予机器“看”的能力,在无人车、智能家居等场景发挥更大的价值。3.3. 自然语言处理• 自然语言处理的几个核心环节:知识的获取与表达、自然语言理解、自然语言生成等,也相应出现了知识图谱、对话管理、机器翻译等研究方向。– 知识图谱:基于语义层面对知识进行组织后得到的结构化结果。– 对话管理:包含闲聊、问答、任务驱动型对话。– 机器翻译:由传统的PBMT方法到Google的GNMT,流畅度与正确率大幅提升。• 应用:搜索引擎、对话机器人、机器翻译、甚至高考机器人、办公智能秘书。4. AI、机器学习、深度学习的关系4.1. 人工智能四要素1) 数据如今这个时代,无时无刻不在产生大数据。移动设备、廉价的照相机、无处不在的传感器等等积累的数据。这些数据形式多样化,大部分都是非结构化数据。如果需要为人工智能算法所用,就需要进行大量的预处理过程。2) 算法主流的算法主要分为传统的机器学习算法和神经网络算法。神经网络算法快速发展,近年来因为深度学习的发展到了。3) 算力人工智能的发展对算力提出了更高的要求。以下是各种芯片的计算能力对比。其中GPU领先其他芯片在人工智能领域中用的最广泛。GPU和CPU都擅长浮点计算,一般来说,GPU做浮点计算的能力是CPU的10倍左右。另外深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。如:cuDNN具有可定制的数据布局,支持四维张量的灵活维度排序,跨步和子区域,用作所有例程的输入和输出。在卷积神经网络的卷积运算中实现了矩阵运算,同时减少了内存,大大提升了神经网络的性能。4) 场景人工智能经典的应用场景包括:用户画像分析基于信用评分的风险控制欺诈检测智能投顾智能审核智能客服机器人机器翻译人脸识别4.2. 三者关系简述人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

版权声明:admin 发表于 2023年2月16日 上午6:12。
转载请注明:人工智能软件有哪些,除了换脸外,AI还有什么前沿的应用 | 热豆腐网址之家

相关文章