双求和符号展开以后的表达式是什么,1\n求和公式是什么

文章 3年前 (2021) admin
0

Q1:诚请计算机高手帮忙!!!!!!!!!!!!

1.1 计算机代数系统的发展历史 什么是计算机代数系统? 从历史的角度来看\COMPUTE” 的涵义是\数值的计算". 数值 计算的涵义不仅仅是数的算术计算, 还包括其它复杂的计算, 例如: 数学函数的计算、求多项式 的根、矩阵的计算、矩阵特征值的计算等等. 数值计算的一个本质的特征是它不能保证绝对的 准确, 原因在于, 在数值计算的过程中我们是用浮点数进行计算的, 对于简单的问题, 我们可以 用纸和笔手工计算, 对于复杂的问题, 就需要用计算器或计算机进行计算. 然而, 对计算机来说, 要想绝对精确的表达一个浮点数几乎是不可能的, 在计算的过程中必然会产生误差. 数学的计算除了数值计算以外还有另一个重要的分枝, 我们称之为符号计算或代数计算. 简 单的讲, 就是对代表数学对象的符号进行计算. 这些符号可以代表整数、有理数、实数、复数或 代数数, 也可以代表其它的数学对象如多项式、有理函数、矩阵、方程组, 或者其它抽象的数学 对象如群、环、域等等. 对于这些抽象的数学符号, 我们通常是手工计算的, 这也是数学家传统 的工作方式. 然而随着计算机技术的发展, 以及对符号算法的深入研究, 用计算机代替人工进行 符号计算已经成为可能. 从二十世纪六十年代以来, 符号计算这个研究领域获得了极大的发展. 一系列符号计算算 法的提出为现代计算机代数系统奠定了理论基础. 比较著名的算法包括: 计算多项式理想的 Grobner 基算法、多项式分解的Berlekamp 算法、计算有理函数积分的Risch 算法. 在二十世纪六十年代, 比较流行的计算机程序语言是FORTRAN 和ALGOL. 这两种语言 主要是用来作数值计算的, 至今FORTRAN 依然是数值计算领域的标准语言之一. 然而FORTRAN 语言和ALGOL 语言并不适合于编写符号计算软件. 六十年代初出现的LISP 语言为符 号计算软件提供了合适的语言环境, 因此早期的符号计算软件都是用LISP 语言编写的. 其中最 著名的符号计算系统是REDUCE, REDUCE 系统是由Stanford 大学的Tony Hearn 开发的基 于LISP 语言的交互式符号计算系统, 最初的目的是用来进行物理计算. 到了二十世纪七十年代 初, 由麻省理工学院的Joel Moses, Willian Martin 等人开发的MACSYMA 系统诞生了, 它是那 个时代功能最强大的符号计算系统. 它的功能除了标准的代数计算以外, 还包括极限的计算、符 号积分、解方程等. 事实上, 许多符号计算的标准算法都是由麻省理工学院的研究小组提出的. 由G. Collins 和R. Loos 开发的SAC/ALDES 系统是另外一种类型的符号计算系统, 它的 前身是G. Collins 在IBM 编写的PM 系统(它是一个处理多项式的符号计算系统). SAC 是一 个非交互的系统, 它是由ALDES(ALgebraic DEScription) 语言编写的模块组成的, 并且带有一 个转换程序, 可以把结果转换成FORTRAN 语言. 到了1990 年, H. Hong 用C 语言重写了SAC 系统, 形成了新的SACLIB 系统. 这个系统提供了完整的C 语言源代码, 可以自由的从国际互 联网上下载. 在二十世纪七十年代的第四个通用的符号计算系统是muMATH. 它是由Hawaii 大学的 David Stoutemyer 和Albert Rich 开发的第一个可以在IBM 的PC 机上运行的计算机代数系统. 1 2 第一章Maple 系统简介 它所使用的开发语言是LISP 语言的一个子集称为muSIMP. 进入二十世纪八十年代, 随着个人PC 机的普及, 计算机代数系统也获得了飞速的发展. 在 这个时代推出的计算机代数系统大部分是用C 语言编写的, 比较著名的系统包括Maple, Mathematica, DERIVE 等. 有关Maple 的特点我们将在后面介绍, 这里, 我们简单介绍一下DERIVE 和Mathematica. DERIVE 是muMATH 的后继版本, 它是第一个在PC 机上运行的符号计算系统.DERIVE 具有友好的菜单驱动界面和图形接口, 可以很方便的显示二维和三维图形. 它唯一的缺陷是没 有编程功能, 直到1994 年DERIVE 的第三版问世时, 才提供了有限的编程功能. 现在DERIVE 的大部分功能都被移植到由HP 公司和Texas 公司生产的图形计算器上. Mathematica 是由Stephen Wolfram 开发的符号计算软件,Mathematica 系统的计算能力非 常强, 它的函数很多, 而且用户自己可以编程. 它的最大优点是, 在带有图形用户接口的计算机 上Mathematica 支持一个专用的Notebook 接口. 通过Notebook 接口, 我们可以向Mathematica 核心输入命令, 可以显示Mathematica 的输出结果, 显示图形、动画、播放声音. 通过Notebook, 我们可以书写报告、论文, 甚至整本书. 事实上, 有关Mathematica 的论文, 软件, 杂志大部分都 是用Notebook 写的, 并且在Internet 网络上广泛传播.Mathematica 的另一个重要特点是它具 有Mathlink 协议, 通过Mathlink, 我们可以把Mathematica 的核心与其它高级语言连接, 我们 可以用其它语言调用Mathematica, 也可以在Mathematica 中调用其它语言编写的程序. 到现 在为止, 能够与Mathlink 连接的语言包括C 语言,Excel,Word 等. 事实上Notebook 就是通过 Mathlink 与Mathematica 核心相连接的. 上面我们介绍的软件都是通用的符号计算系统, 其它通用的符号计算系统还有IBM 公司 的Thomas J. Watson 研究中心开发的AXIOM, 它的前身称为SCRATCHPAD. 除了上述通用的符号计算系统以外, 还有一些在某个领域专用的符号计算系统. 例如: 用于 高能物理计算的SCHOONSCHIP, 用于广义相对论计算的SHEEP 和STENSOR. 在数学领域 中用于群论的Cayley 和GAP, 用于数论的PARI, SIMATH 和KANT. 在代数几何和交换代数 领域中常用的系统是CoCoA 和Macaulay. 还有专门计算Lie 群的Lie 等等. 1.2 计算机代数系统的网络资源 进入二十世纪九十年代以来, 随着国际互联网的迅速发展, 符号计算系统的发展变的更加 迅速和开放. 从国际互联网上可以获取各种符号计算系统, 以及其他数学软件的相关信息. 有些 新的符号计算系统甚至提供源代码. 有些数学软件还有新闻组或讨论组, 通过讨论组, 用户可以 彼此交流信息、解答问题. 厂家也可以及时发现软件的问题, 进行修改. 下面我们介绍一些常用 数学软件的网络资源, 以及主要研究机构的地址. Mathematica 的网络资源: http://www.wolfram.com http://www.mathsource.com http://www.matheverywhere.com http://smc.vnet.net/MathTensor.html ftp://ftp.mathsource.com news://comp.soft-sys.math.mathematica 1.3 Maple 的基本功能3 maillist:mathgroup@wolfram.com Maple 的网络资源: http://www.maplesoft.com http://daisy.uwaterloo.ca ftp://ftp.maplesoft.com maillist:maple-list@daisy.uwaterloo.ca Matlab 的网络资源: http://www.mathworks.com ftp://ftp.mathworks.com news://comp.soft-sys.matlab REDUCE 的网络资源: http://www.rrz.uni-koeln.de/REDUCE http://www.zib.de/Symbolik/rece ftp://ftp.rand.org/software_and_data/rece 符号计算研究机构及信息中心 http://symbolicnet.mcs.kent.e http://www.cain.nl/http://www.risc.uni-linz.ac.at news://sci.math.symbolic 其它符号计算软件的网络地址: Derive http://www.derive.com Macaulay2 http://www.math.uiuc.e/Macaulay2/Macsyma http://www.macsyma.com Magma http://www.maths.usyd.e.au:8000/u/magma/Mathcad http://www.mathsoft.com MuPad http://www.mupad.de Scilab http://www-rocq.inria.fr/scilab/1.3 Maple 的基本功能 计算机代数系统与其它计算机语言的本质区别是: 计算机代数系统具有符号计算的能力, 为用户提供交互式的计算环境, 可以进行常规的数学计算, 可以根据给定的数学函数画出函数 的二维或三维图形. 下面我们简要描述Maple 的基本功能. 数值计算 对于普通的数,Maple 总是进行精确的计算, 这种规则对于有理数和无理数是相同的. 因此 对于无理数Maple 按照有关的数学规则进行计算, 只有当用户需要计算浮点数近似值时,Maple 才按照用户要求的精度计算. > 1/5+1/4; 9 20 4 第一章Maple 系统简介 > 5!/21; 40 7 > evalf(%); 5:714285714 > evalf(Pi,40); 3:141592653589793238462643383279502884197 > 2.496745643/2; 1:248372822 > abs(3+5*I); p34 > (3+4*I)/(1+I); 71 + I 22 从上面的例子可以看到, 对于复数Maple 按照复数的规则进行计算. 多项式 符号计算系统的最基本功能是处理符号表达式, 多项式则是最基本的符号表达式. 从下面 的例子中可以看到Maple 可以用各种方式处理多项式、三角表达式、指数与对数等许多数学表 达式. > factor(x^4+2*x^3-12*x^2+40*x-64); (x . 2) (x 3 +4 x 2 . 4 x + 32) > expand((x+1)^5); x 5 +5 x 4 + 10 x 3 + 10 x 2 +5 x +1 > simplify(exp(x*log(y))); x y > simplify(sin(x)^2+cos(x)^2); 1 > expand((x^2-a)^3*(x+b-1)); x 7 + x 6 b . x 6 . 3 x 5 a . 3 x 4 ab +3 x 4 a +3 x 3 a 2 +3 x 2 a 2 b . 3 x 2 a 2 . a 3 x . a 3 b + a 3 > expand(cos(4*x)+4*cos(2*x)+3,trig); 8 cos(x)4 1.3 Maple 的基本功能5 > combine(4*cos(x)^3,trig); cos(3 x) + 3 cos(x) 解方程 用Maple 来解简单的方程是毫无问题的, 即使是很复杂的方程,Maple 也可以用数值计算的 方法来处理. > solve(x^2-3*x=2,x); 31 31 2+ 2 p17, 2 . 2 p17 > glsys:=f2*x+3*y+z=1,x-y-z=4,3*x+7*z=3g: > solve(glsys); ..24 97 ..43 fz = 41 ;x = 41;y = 41 } > fsolve(fx^2+y^2=10,x^y=2g,fx,yg); fx =3:102449071;y = :6122170880} 矩阵计算 Maple 还有许多命令可以处理矩阵和向量, 不过需要调用线性代数软件包linalg. 还有一 点特别的是, 作矩阵的乘法需要一个特殊的算子&*. > with(linalg): Warning, new definition for norm Warning, new definition for trace > a:=matrix([[2,3],[1,4]]); > inverse(a),det(a); a := . .. 23 14 . .. 2.. 4 ..3 55 ..12 55 3.. , 5 > b:=matrix([[w,x],[y,z]]); b := . .. wx . .5 yz 第一章Maple 系统简介 > evalm(a+b); . .. 2+ w 3+ x 1+ y 4+ z . .. > evalm(a &* b); . .. 2 w +3 y 2 x +3 z w +4 yx +4 z . .. 极限, 求和与乘积 对于普通的求极限问题, 可以直接用Maple 来计算, 它还可以符号的计算级数的和与积. 当 符号计算不成功时, 还可以作数值计算. > limit((sqrt(1+x)-1)/x,x=0); 1 2 > limit(x!/x^x,x=infinity); 0 > sum(1/2^n, n=1..infinity); 1 > evalf(proct(1+1/x^2, x=1..infinity)); 3:676077910 微分与积分 用Maple 来求微分是相当容易的, 使用diff 命令即可以求出数学表达式的微分, 不过求出 的结果可能是相当复杂, 因此通常还要用simplify 命令进行化简. 求数学表达式的定积分和不 定积分就相对复杂一些, 需要某些特定的算法. 对于复杂的函数, 求出的结果可能是某些特殊函 数. 对于定积分, 还可以用evalf 求出积分的数值. > simplify(diff((x-1)/(x^2+1),x)); x2 . 1 . 2 x . (x2 + 1)2 > diff(sin(x*y),x); cos(xy) y > int(1/(1+x+x^2),x); 21 p3 arctan( (2 x + 1) p3) 33 1.3 Maple 的基本功能7 > int(sin(x^2),x=a..b); 1 FresnelS( b p2) p2 pπ . 1 FresnelS(a p2) p2 p 2 pπ 2 pπ > int(sin(x)/x,x=0..5); Si(5) > evalf(%); 1:549931245 微分方程 对于不太复杂的常微分方程,Maple 可以求出它的符号解. 如果你没有给初始条件, 或者给 的初始条件或边界条件不全, 在解的公式中会带有积分常量. > deq:=diff(y(x),x)*y(x)*(1+x^2)=x; deq := ( . y(x)) y(x)(1 + x 2)= x @x > dsolve(fdeq,y(0)=0g,fy(x)g); y(x)= pln(1 + x2), y(x)= ..pln(1 + x2) > dsolve((y(x)^2-x)*D(y)(x)+x^2-y(x)=0,fy(x)} ); 11 x 3 . y(x) x + y(x)3 = C1 33 级数展开 当数学问题比较复杂时, 求出准确解通常是不可能的, 用series 作级数展开是有帮助的. > series(sin(x),x=0, 10); 11 5 11 10) x . 6 x 3 + 120 x . 5040 x 7 + 362880 x 9 + O(x 例如在下列微分方程中, 就是用级数方式求出的微分方程级数解. > Order:=10: > deq:=diff(y(x),x$2)+diff(y(x),x)+y(x)=x+sin(x ); @2 @ deq :=( y(x))+( y(x)) + y(x)= x + sin(x) @x2 @x > sln1:=dsolve(fdeq, y(0)=0, D(y)(0)=0g,fy(x)g,series); 1 3 1 4 1 5 + 1 6 1 7 1 8 + 1 10) sln1 := y(x)= 3 x . 12 x . 120 x 240 x . 5040 x . 20160 x 181440 x 9 + O(x 第一章Maple 系统简介 Laplace 和Fourier 变换 Laplace 变换和Fourier 变换是常用的数学变换. 在Maple 中有一个积分变换的程序包 inttrans 提供了各种积分变换和它们的逆变换. > with(inttrans): > laplace(cos(t-a),t,s); s cos(a) + sin(a) s2 +1 > invlaplace(%,s,t); cos(a) cos(t) + sin(a) sin(t) > combine(%,trig); cos(t . a) > alias(sigma=Heaviside): > f:=sigma(t+1)-sigma(t-1): > g:=simplify(fourier(f,t,w)); g := 2 I (π Dirac(w) w . I) sin(w) w 插值与函数拟合 interp命令可以由n 个点出发计算n . 1 阶的插值多项式. 在下例中,x 的取值是1 到10, y 的值是1 到10 之间的10 个随机数.f 是相应的插值多项式. > datax:=[seq(i,i=1..10)]: > datay:=[seq(rand(10)(),i=1..10)]: > dataxy:=zip((x,y)->[x,y], datax, datay); dataxy := [[1, 1], [2, 0], [3, 7], [4, 3], [5, 6], [6, 8], [7, 5], [8, 8], [9, 1], [10, 9]] > f:=interp(datax, datay, x); 17 9 517 11699 7 3719 27323 176741 4 652577 3f := 51840 x . 40320 x 8 + 60480 x . 2880 x 6 + 17280 x 5 + 5760 x . 3240 x 1816483 2 1669153 + xx + 293 3360 . 2520 使用数值逼近程序包numapprox 中的pade 命令可以计算一个给定函数的有理逼近函数, 以及其它类型的逼近函数. > with(numapprox): > x0:=solve(x^2=Pi/2)[1]; x0 := 1 p2 p 2 1.3 Maple 的基本功能9 > f:=pade(tan(x^2), x=x0, [3,3]); 8 10 f := (..17280 19=2 p2 + 10800 %1 7 + 43200 %13 . 7680 %13 12 . 3072 %12 25=2 p2 . 32400 15=2 p2 + 3840 23=2 p2 + 28800 %1 9 + 3072 %13 + 23040 %12 21=2 p2 + 14400 %12 17=2 p2 . 11520 %1 11) .( (..11520 11 + 1024 13 . 14400 9 . 10800 7) %13 + (7680 23=2 p2 . 11520 19=2 p2 + 21600 15=2 p2) %12 +(..7680 12 + 34560 10 + 64800 8) %1) %1 := x . 1 p2 pπ 2 > evalf(normal(f)); 6:(..:4532958122 109 x 2 . :1125313130 109 + :1054184360 109 x 3 + :5353835473 109 x) ((2:x . 2:506628274) (..:1097168700 109 x 2 + :8958248690 109 x . :1356288866 1010)) 图形 最常用的画图命令是plot和plot3d.下面的例子说明了使用在两个命令的方法. >plot(sin(x)*exp(1)^(-x/7),x=0..4*Pi); -0.4-0.200.20.40.60.824681012x>plot3d(sin(x)*exp(1)^y,x=0..2*Pi,y=0..Pi,axes=boxed); 20-1001020 Maple 编程 Maple 不仅可以对数学表达式进行计算, 还可以编程. 他的编程语言和其它的结构化编程 语言很相似. 10 第一章Maple 系统简介 > f:=proc(x::nonnegint) > option remember; > if x=0 then 0 > elif x=1 then 1 > else f(x-1)+f(x-2) end if > end proc: > f(40); 102334155 1.4 Maple 系统的交互使用 Maple 的窗口环境提供了先进的工作区界面, 其扩充的数学功能简明易用, 用户可以在其 中展现数学思想, 创建复杂的技术报告, 充分发挥Maple 的功能. 图1.1: Maple 的窗口环境 A Maple 的工具条 B 内容工具条, 它还包含一个输入和编辑文本的区域 C 节的头部及标题 D Maple 的输入, 提示符为\>", 显示为红色 1.4 Maple 系统的交互使用11 E Maple 的输出, 既执行Maple 命令的结果, 通常显示为蓝色 F 一组Maple 命令及其输出 G Maple 的工作区 H 工作区元素组成的节 I 节的范围: 用一个大的方括号\[” 表示 J 省缺的Maple 输入提示符 K 符号模板, 包含了许多常用的数学符号 L 表达式模板 M 矩阵模板 N 向量模板 Maple 工作区界面 Maple 的图形界面具有现代应用软件界面的常见功能, 它支持鼠标操作, 包括剪切和粘贴等 功能, 如果你已经习惯了这些用法, 那就具备了使用Maple 工作区界面的基本知识. 现在你可 以执行一些标准的操作, 例如: 打开文件、保存和打印文件等. 对于Windows 平台, 只要双击Maple 图标即可启动Maple. 在Unix 系统下, 可在提示符 之后键入xmaple 命令来启动.Maple 启动后将开启一个新的工作区. 在窗口上端是菜单条, 包括File 和Edit 等菜单项, 菜单条之下是工具条, 其中有若干用于 经常性操作的快捷按钮, 如文件打开, 保存和打印等. 工具条之下是内容指示条, 其中有一些控 件规定当前执行的任务. 再向下是较大的工作区区域, 也就是你的工作区. 窗口的最下端是状态 条, 其中显示系统信息. 作为Maple 用户界面的一个组成部分, 工作区是用户交互的求解问题和把工作写成文档的 集成环境. 所谓交互的求解问题, 简单的说就是输入适当的Maple 命令, 得到结果. 在工作区中 可以修改命令, 重新执行并获得新的结果. 除了Maple 命令及其结果以外, 还可以在文档中加入 许多其他类型信息. 主要包括: 可以加入文本, 用户能够逐个字符地控制文本段落. . 在文本段中, 可以加入数学表达式和Maple 命令. . 可以加入超连接, 当用鼠标单击某特定文本区域时, 能跳转到工作区的其他位置, 或其它文 . 本中. 可以规定文档的结构, 包括超连接, 节与小节的划分. . 在Windows 平台上, 用户可以嵌入其他对象, 可借助OLE 2( 对象连接与嵌入标准) 嵌入图 . 形和表格. 添加标题 在Maple 的工作区中不仅可以作数学计算, 还可以编写文档. 首先我们可以给文档加标题. 具体步骤是: 将光标移到第一行, 在Insert 菜单的Execution Group 中选择Region Before 项, 此时在顶部出现一个新区域. 这个区域包含一个Maple 输入的提示符, 这意味着此时是输入 Maple 命令的状态. 点击工具条上的 T 按钮或从Insert 菜单中选择Text Input 项, 就把这个 区域变成了文本输入状态, 现在就可以输入文本. 此时在工具条下面又出现了一个新的文本选 择工具条, 从中你可以选择文本的字体格式等. 如果你输入的是文章的标题, 就可以在文本格式 12 第一章Maple 系统简介 的下拉菜单中选择标题格式. 输入标题后回车, 系统会自动要求你输入作者的名字, 输入完作者 名以后就可以输入正文了. 添加小标题 对文档的进一步加工是把文档分解为节. 具体作法是首先用鼠标选定相关的区域, 然后点 击工具条中的. 键, 此时就在选定的区域前面出现了一个小方块, 下拉一个大括号, 括住了选 定的区域. 并且在这个区域的第一条命令之前插入一个文本区域, 此时你可以输入节的标题, 回 车后还可以输入其他说明文本. 如果需要开始新的一节, 可以在Insert 菜单中选择section. 就可以在这一节之后创建新的一节. 行内数学表达式 在一个文档中有时需要插入数学表达式, 例如下面一段文字: Look at the integral . x2 sin(x . a)dx. Notice that its integrand, x2 sin(x . a), depends on the parameter a. 在其中插入数学公式的方法是: 首先将光标移到相应的位置, 从Insert 菜单中选择Math Input 项, 然后输入对应于. x2 sin(x . a)dx 的Maple 代码, 即Int(x^2*sin(x), x), 注意观察内容指 示条中的编码区域, 其中显示输入的代码, 而工作区中则显示使用标准数学符号的积分表达式. 在数学表达式输入完成后, 再将输入状态变成文本输入状态, 就可以继续输入其他文本. 这样就 完成了我们的文档, 它既可以保存也可以打印. 添加超连接 在Maple 系统中, 用户可以同时打开多个工作区, 在不同的工作区之间可以通过建立超连 接的方式建立联系. 建立超连接的方法是: 在一个工作区中用鼠标选定一个位置, 在Insert 菜 单中选择Hyperlink 项. 此时弹出一个对话框, 它要求用户输入联接的文字和另一个工作区的 文件名. 填写完成后单击OK 键就完成了超连接. 建立书签 在工作区中可以插入书签, 以便迅速的查找内容. 单击指向书签的超连接,Maple 将立即转 至书签位置. 建立书签的方法是: 首先将光标移动到要插入书签的位置, 从View 菜单中选择 Edit Bookmark 项. 在弹出的对话框中键入一段文字, 例如\expr command” 作为书签文本, 单 击OK 按钮插入书签. 当你移动光标到工作区的任何位置时, 从View 菜单中选择Bookmark, 再 从弹出的菜单中选择expr command 项, 就可以跳到你插入书签的位置. 此外超连接的方式也可以使用书签. 具体作法是: 首先按照前面的方法建立书签, 将光标 移动到建立超连接的位置, 在Insert 菜单中选择Hyperlink 项. 在弹出的对话框中输入联接的 文字, 然后在Book Mark 区域添入你已经建立的书签的标记, 例如\expr command", 单击OK 键 就完成了超连接. 帮助系统 前面我们介绍了Maple 的计算和排版方面的能力, 然而这只能是简介, 在本书中, 我们不可 能详尽的描述Maple 的所有命令, 因为Maple 包含了数以千计的命令. 为了了解这些命令的使 用方法, 可以使用Maple 软件带有的一个自足的参考手册, 即Maple 的帮助系统. 借助帮助系 1.5 Maple 的组织结构13 统, 可以按名字或主题查询Maple 命令及其特点. 此外用户还可以自行选择关键词或术语, 来 迅速打开含有这些文字的帮助页面. 在每个帮助页面中还提供了超连接, 使用户可以阅读相关 的页面. 在帮助系统中,Maple 提供了三种方法定位信息: 按目录、按主题和按全文查找. 从Help 菜 单中选择Contents, 帮助窗口将变为帮助系统的一个简单目录, 用户可以通过超连接的方式浏 览帮助系统. 这就是按目录的查找方法. 通过这种方法我们可以大致了解Maple V 的基本功 能, 但是要从中找到某个特定的主题还是很困难的. 按主题查找的方法是: 从Help 菜单中选择 Topic Search, 此时帮助窗口将弹出一个对话框, 在其中添入需要查找的主题, 点击OK 键, 就可 以阅读相应的帮助文档. 如果已经知道希望阅读的主题词, 也可以直接从工作区访问该页面, 办 法是在Maple 提示符后键入?topic, 回车后就可阅读相应的页面. 在大多数Maple 版本中(唯一的例外是Maple V Realese 4 版本), 进入帮助系统后,Maple 会打开帮助浏览器, 通过帮助浏览器可以方便地找到你需要的帮助. 有的时候, 在解决某个数学问题时不知道应该使用Maple 的什么命令, 但是由数学问题本 身出发, 有理由推测, 在这些命令的帮助页面应当包含某些特定单词, 此时就要用到全文查找的 方法. 例如我要解一个微分方程, 但是不知道应该用什么命令, 我们可以推测, 在这个命令的帮 助中应该包含solve, di erential 和equation 等单词, 此时可以在Help 菜单中选择Full Text Search, 在弹出的对话框中, 输入要查找的关键词, 例如solve di erential equation 等, 然后单击 Search 按钮, 通知Maple 开始检索.Maple 将列出匹配的主题, 并附带数值, 表明匹配的程度, 用 户可从列表中选择最感兴趣的主题. 此外从Help 菜单中选定Balloon Help 项以后, 当鼠标停留在某个按钮或菜单上时,Maple 就显示简短的说明. 这也是一个很有用的功能. 1.5 Maple 的组织结构 Maple 是由加拿大Waterloo 大学的符号计算组开发的计算机代数系统. 它可以在各种计 算机上运行, 从超级计算机, 例如Cray Y/MP, 到用于桌面的微型计算机, 例如IBM PC 兼容 机.Maple 既可以在单用户的操作系统, 例如MS-Windows 上

Q2:关于学习c语言的问题

他是对的1这本书真的很好2我也在研究这本半书3我这里有一些学习C语言的大师们留下的笔记4我想它可能对你有用5C程序入门,第一类口语6低级语言:计算机语言,使用二进制进行编程,用户很难识别,机器很容易识别7两个8汇编语言:(低级语言)用简单的英文字母进行编程,用户稍有察觉,计算机无法使其识别,需要翻译9汇编语言:把汇编语言翻译成机器语言10反汇编语言:将机器语言翻译成汇编语言11三个12高级语言:用接近自然语言的语言编程,用户容易编程,计算机无法识别,需要翻译,速度慢13讲解程序:整句翻译;编译程序:翻译整个程序;二、C语言的特点1、C语言是一种中间语言低级语言:直接访问硬件高级语言:自然语言具有良好的可移植性2、C语言是一种具有属性、循环性和选择性的结构化编程语言3、C语言具有丰富的数据类型和运算符数据类型:数据在计算机中的表示14基本数据类型:整型实型字符类型int float char controller: %d整型%f实型%c字符类型4、C语言的终止符为分号,大括号为语句或函数范围5、C语言#的组成包括文件名15h #定义宏名字符主主函数预处理(以#开头)(不属于C语言)编写主函数(16C)一个C语言程序由一个主函数组成,只有一个主函数17可能有也可能没有执行程序的子功能,从子功能开始从左到右,从上往下18补充:数字系统是一19含义由一组数字组成,并根据某些规则管理数据20分类二进制八进制十六进制组成:2: 0 1 8: 0-7十进制:0-9 16: 0-9和A-F权重:根据位置不同,数值不同21表示法:基数的n次方(n从0开始)基数:组成数字系统的位数2223 1 * 100 2 * 10 3 * 1 3.1转换23十进制数-其他十进制规则:整数:除以相应十进制系统的基数,然后除以余数,并反向排列24小数:乘以相应数字系统的基数,再除以整数25

* *乘法不够时,保留前两位26(13.5)10=(1101.1)2 2.其他十进制-十进制数规则:按重量展开27加法和求和28(1101.167)8=(13.)10 3.其他二进制2-8采用421算法(001 011 010 101 110.001 101 011 100)2=(133 256.1534)8规则3360从小数点开始到两边每三个29小数部分稍后填写,然后,每组按权重相加求和30八二使用421反向算法将一个八位字节分成三个二进制位31(75462.5041)8=(111101100110001)2 Two-16使用8421算法规则3333.0000000005如果少于4位,则整数部分在前面填充,小数部分在后面填充,然后,根据权重展开将各组相加求和32(1001 1110 1100 1010.1101 1001 0100)2=(9ECA)16十六进制-二,一个十六进制位被8421逆算法分成四个二进制位33(10afd) 16=(1000001111101 Decimal第二讲数据类型常量变量134数据类型:计算机中的数据表示形式整型基础数据单精度实型(浮点型)双精度字符型结构型构造型公共体数组指针型,空型352.常数136意思是,在节目娱乐中价值不变的量372.使用形式138文字量39s=2 * P * r;2.宏符号#定义X 3.141592627 int x三类整数常量实常量字符常量字符串常量A:整数常量140表示八进制十进制十六进制(二进制不能表示整数常量)241书写格式十进制3360由0-9组成,不能以0开头425 6八进制3360由0-7组成43必须以0开头44eg:05 07十六进制:由0-9和a-f组成,必须以0x开头450x50xa001346分类、范围、空格、控制字符十进制3360-5 11111111111111 5 000000000101 123% % d-32768-32767短整数(2B)无符号int x;% u0-65535(带符号)长(int)x;% %ld -2147483648 - 2147483647长整型(4B)无符号长整型(int)x;% lu0-429.八进制(无符号)符合整数的定义规则47短无(2b) 2B): %o 0 - 017777长无(4b) 3360% LO 0-0377 77777十进制(无符号)表示形式十进制指数形式248十进制由0-9组成,小数点前后必须有一个带数据的小数点49单精度: E(e float % f 10(-38)-10(38)4b双精度3360双精度% lf 10 (-308)-10 (308)必须有订单代码标记E(E),订单代码标记前后必须有数据,前面是整数或实数50

指数部分:必须是整数. %e 与%f一致小数点后保留6位,且E也算一位 C:字符型常量 1.书写格式 由一对单引号括起的任意一个字符. 2.分类 ASCII码字符(共256个) "a"---"z"[97--122] "A"--"Z"[65--90] "0"---"9" [48--57] ASCII码值:每个字符对应的十进制整数.(无符号) 0---255 main(){ char c; scanf("%c",&c;); printf("%c",c-32);} if(c>=97&&c;="A"&&c;="0"&&c;<=57) printf("%c is shuzi",c); else printf("%c is qita",c); 转义字符 书写格式:以\开头,用一对单引号括起一个或多个字符,但是表示是一个字符. 分类: "\+字母":作用:主要控制光标. "\n":光标回车换行. "\t":光标跳到下一个制表位 "\r":光标回到行首 "\b":光标左退一列 printf("******\n*******"); "\+标点":作用:控制输出一个标点符号 "\"":输出一个单引号 "\"":输出一个双引号 "\\":输出一个反斜杠 "\+数字": 作用:表示一个ASCII码字符. "\0ddd":八进制转义字符:最多三位八进制数*****0可以省略. "\xdd":十六进制转义字符:最多二位十六进制数 "\0123" "\123" "\xa1" printf("%c","\61"); 3.范围(1B) 有符号:-128----127 无符号:0--255 char c=-5; printf("%c",c); D:字符串常量 书写格式:由一对双引号括起任意零个1个或多个字符51 字符串的长度:组成该字符串的字符个数52 字符串结束标志:"\0" 空间:串长度+1个空间. 控制:%s char x[100]; scanf("%s",x); printf("%s",x); printf("%s","kdfjlkdsjfsdls"); printf("%s","zheng"); "":空串. 三.变量 1.其值在执行程序中可以改变的量. 2.定义格式 存储类型 数据类型 变量名1,变量名2,......变量名n; int x,y,z; 存储类型:变量开辟空间的类型. auto:(默认)自动型 该变量的默认值为随机值. static:静态型 该变量的默认值为0值. regiester:寄存器型 该变量的默认值为随机值. extern:外部参照型 该变量的默认值为0值. (我们使用省略extern型) static int x; printf("%d",x); aaa.prg a1.c int x; a2.c extern int x; a3.c int x; main() { int x; } 变量名: a:多个变量之间用,隔开; b:相同类型的变量可以写在同一个语句中; int a,b,c; c:变量命名 必须符合合法的用户标识符 标识符:用来表明或表示变量或函数的名字或类型的符号. 关键字:用来标识类型的标识符.(32个关键) 存储类型,数据类型,流程类 ,运算符类(sizeof) 标识符:由字母,数字,下划线组成,不能以数字开头,不能与关键字重名. int if; _a1; 1a a 1; main() { int x,X; float x; ****不能与同一范围内的变量名重名.***** 3.给变量赋值. 通过两种: 赋值表达式: = 输入函数:scanf() x=3; scanf("%d",&x;); a:赋值表达式 格式: 变量名=表达式; 左边必须是变量名,右边赋值给左边,并将左边变量的值覆盖.当一个变量进行多次赋值时,该变量只能保留最一次所赋的值. main() { int x; x=2; x=5; scanf("%d",&x;); printf("%d",x); getch(); } int x,y,z; x=2; y=3; z=x; x=y; y=z; x=3; y=2; b:scanf() 格式:scanf("控制符",地址项) scanf("%d%f%c",&x;,&y;,&z;); 3. 数据类型之间转换(两个自动,一个强制) a:在赋值时,右边数据的类型自动转换成左边变量的类型. int x; x=1.23; float x; x=10; char c=65; int x="a"; int x=32768; printf("%d,%u",x,x); b:运算时,数据类型低的转换成数据类型高的(占空间的字节数) int x; float y; printf("%f ",x+y); c:强制转换 格式:(数据类型)表达式 数据类型:将要转换成的类型 表达式:要转换的对象. (float)x+y (float)(x+y) x+(float)y float x=12.345,y; y=x-(int)x; printf("%f",x); (int)x%2==0 第三讲 运算符及表达式 目:根据运算对象对运算符分为:单目,双目,三目. 表达式:简单和复杂表达式 简单:无运算连接的式子. 3 x (1) 复杂:有运算连接的式子. x+y x=3 x*/%-->+,- 结合性:单目:从右向左;双目:从左向右. - - -5 x%2/y*z 二.赋值运算符 = += -= /= *= %=(自反赋值) 规则: s=5 自反赋值:左边和右边先按指定的运算符进行运算,然后再赋值给自己.*****左边必须先有值. x=2; x+=5 x=x+5; 表达式: 表达式的值与左边变量的值一致. printf("%d",x=5); 结合性:从右向左 int x=3; x+=x-=1; 三.关系运算符 = == != 规则:. 表达式的值:逻辑值,当判断成立时,得到逻辑值真值(用1表示),不成立时,得到逻辑值假值(用0表示)****因为C语言中没有逻辑型数据**** 类型:整型. int x,y; x=3; y=4; printf("%d ",x<y); c="a" "z">=x>="a" 优先级: = -->== != 结合性:从左向右 x>y>z x>y && x>z 四.逻辑运算符 &&(逻辑与) 双目 ||(逻辑或) 双目 !(逻辑非)单目 规则: 格式:表达式1&&/||表达式2 &&:表达式1和表达式2必须都为真值(非零值),整个逻辑与表达式才成立.产生逻辑值真值(用1表示) 如果表达式1或表达式2其中一个是假值(0值),整个逻辑与表达式不成立.产生逻辑值假值(用0表示) x= x=5&&6="a"||x5) 优先级:!-->&&-->|| x>="a"&&x;="A"&&x;<="Z" ********* &&:如果表达式1为假了,系统不对表达式2进行计算了 ||:如果表达式1为真了,系统不对表达式2进行计算了 int x,y; x=3; y=4; x= xy||x=9 x,y? 对&&和||而言:不是按优先级计算,而是先计算表达式1,再计算表达式2. 结合性:单目:从右向左 双目:从左向右 ! ! ! ! !5 表达式的值:逻辑值 类型:整型. int x,y; scanf("% if(x>y) 五53自增/减运算符 ++ -- 单目 规则: 表达式++ 表达式-- 后缀表达式 ++表达式 --表达式 前缀表达式 main() { int x; x=2; printf("%d",x++); x=2; printf("%d",++x); } 变量的值:会自动的增/减1; 表达式的值: 后缀表达式:与变量改变之前值一致54 前缀表达式:会与变量的值一致增/减1; 表达式: x++ x=x+1 x+=1 六55条件运算符( ? : )三目 规则: 表达式1?表达式2:表达式3 x>y?printf("%d",x):pritnf("%d",y); int x,y; w=x>y?x:y; printf("%d",w); int x,y; if(x>y) printf("%d",x); else printf("%d",y); 先计算表达式1,若产生非零值,则执行表达式2,并将表达式2的值作为整个条件表达式的值,若产生 零值,则执行表达式3,并将表达式3的值作为整个条件表达式的值(若执行表达式2,不执行表达式3) int x,y,w; x=5; y=4; w=x>y?x++:y++; printf("%d,%d,%d",w,x,y); if(x>y) x++; else y++; x,y? 优先级: 单目(++,--,-+!)-->算术双目-->关系-->逻辑运算-->条件-->赋值->逗号. 结合性:从右向左分出正确的表达式,从左向右计算. ?: ? ?: : ? : w=x>y? x>z?x: z : y>z?y: z 3个 w,x,y,z if(x>y) if(x>z) w=x; else w=z; else if(y>z) w=y; else w=z; 七.逗号 , 双目 作用:分隔,运算符 格式:表达式1,表达式2 规则:从左向右算,取最后一个表达式的值为整个逗号表达式的值. int x=5,y; y=x++,--x,x,x+1,x; x,x+1,x,(y=x++,++x); y=(x++,--x,x,x+1,x); printf("%d",(x,y)); 第四讲 流程控制语句 顺序 循环 选择 一.选择语句 if..else 和 switch 作用:根据条件执行程序的某一部分. A:if...else 1.格式 if(条件表达式) { 语句组1; } else { 语句组2; } 注意: a:if,else为关键字必须为小写. b:条件表达式:一般写关系或逻辑表达式. c:else可选项,{}当执行语句只有一句时,可以省略. 2.执行过程 首先计算条件表达式的值,若为非零值,则执行if分支,否则,若有else分支,则执行else,没有时,执行下面的其它语句. 3.嵌套 在if或else分支中又出现if..else语句. a:在else中出现if..else if( ) ..... else if( ) ..... else if( ) ..... else ...... b:在if分支中出现if...else if1( ) if2( ) if3( ) if4( ) ..... else4 ..... else3 ..... else2 ...... else1 ........ c:在if和else中出现if...else if( ) if( ) .... else .... else if( ) .... else .... if(x%4==0&&x;%100!=0||x%400==0) if(x%4==0) if(x%100==0) if(x%400==0) printf("run"); else printf("ping"); else run; else ping if(x>y) if(x>z) w=x; else w=z; else if(y>z) w=y; else w=z; B:多开关语句switch 格式 switch(表达式) { case 常量表达式1:语句组1;[break;] case 常量表达式2:语句组2;[break;] case 常量表达式3:语句组3;[break;] ................n:.....n;[break;] default :语句组n+1; } 注意: a:表达式的类型必须与常量表达式的类型一致.整型或字符型. b: break;是可选项, 当遇到break表示该语句执行完毕. c:default是可选项.{}不可省略. d:同一个switch语句中,常量表达式的值不能重复. int x,y; char w; scanf("%d%d%c",&x;,&y;,&w;); switch(w) { case "+":printf("%d",x+y);break; case "*":printf("%d",x*y);break; case "/":printf("%d",x/y);break; case "-":printf("%d",x-y);break; default:printf("wu ci yun suan fu"); } 2.执行过程 ...... 3.嵌套. char c; scanf("%c",&c;); switch(c>="a"&&c;="A"&&c;="0"&&c;<="9") { case 0:printf("qita");break; case 1:pritnf("shuzi");break; }break; case 1:printf("daxie");break; }break; case 1:printf("xiaoxie");break; } 二.循环语句 for while do...while 作用:根据条件重复执行程序的某一部分. A:for语句 1.格式 for(表达式1;表达式2;表达式3) { 循环体语句; } for(x=1;x<=10000;x++) { printf("%d",x); } 注意: a:表达式1:给循环变量赋初值 b:表达式2:决定是否应该进入循环的条件,一般为关系或逻辑表达式. c:表达式3:给变量重新赋值. d:{}可以省略.3个表达式均可省略.同时省略 for(;;)无限循环. 2.执行过程 首先执行表达式1给变量赋初值,然后再判断表达式2是否成立.若成立则进入循环体,当执行到}表示一次循环体执行完毕.再执行表达式3给变量赋新值,然后再判断表达式2是否成立.若成 立,再进入循环体,否则,表示该语句执行完毕. 1.求1---100和 2.接收10个实数,对小数部分求和. B:while语句 a.格式 while(表达式) { 循环体; } 注意:{}当循环体只有一句时,可以省略.表达式与表达式2一样,但不能省略.while(1)===for(;;)无限循环. for(i=1;i<=100;i++) printf("%d",i); int i; i=1; while(i<=100) { printf("%d",i++); } 补充: 输入/出单个字符的函数.**必须预处理 getchar()和putchar() 格式 变量名=getchar(); putchar(变量名/常量); main() { char x; scanf("%c",&x;); printf("%c",x); x=getchar(); putchar(x); } C.do ...while a:格式 do { 循环体; }while(表达式); 注意: ;{}均不可省略.先执行一次循环体,再判断表达式是否成立. 至少执行一次. main() { int i; i=1; do { printf("%d",i); }while(++i<=100); D:嵌套 for(i=1;i<=3;i++) for(j=1;j<=3;j++) for(k=0;k<=59;k++) { printf("%d:%d:%d",i,j,k); delay(1); } **** *** ** * for(i=1;i<=4;i++) { for(j=1;j<=5-i;j++) printf("*"); putchar("/n"); } 1!+2!+3!+4!+....n! 阶乘56 三.转移 break; 作用:只能用在循环体或switch语句中57 用在循环体中,为了终止其所在的循环体58 while(c!="*") c=getchar(); if(c=="*") break; continue; 只能用在循环体中,提前结束本次循环体语句,而进入下一次循环体59 for(i=1;i<=100;i++) { if(i%2) continue; printf("%d",i); } *********************************************** 数组前的笔记 +qq619740933,能帮你讲得尽量帮你讲明白

Q3:矩阵中各元素相加之和用数学表达式如何表示?

如果所有元素加在一起,应该是 a (I,j),a 表示一级循环,你的两个下标应该是二级循环60

Q4:100 ∑ n n=1 是利用求和符号表示的题1+2+3+4+5+616263100的表达式怎么理解:例如:n代表什么

理解这一点:求和的符号 n=1表示自然数N的初始值从1开始,其中n=1应该写在 n下面,100表示自然数N的最终值是100,这里100应该写在 n上面表示自然数N的求和,希望大家能理解,祝学习进步!

Q5:n的阶乘公式

1、当n=0时,n!=0!=12、当n为大于0的正整数时,n!=1×2×3×…×n一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积64自然数n的阶乘写作n!65该概念于1808年由数学家基斯顿·卡曼引进66通常我们所说的阶乘是定义在自然数范围里的(大多科学计算器只能计算 0~69 的阶乘),小数科学计算器没有阶乘功能,如 0.5!,0.65!,0.777!都是错误的扩展资料0的阶乘由于正整数的阶乘是一种连乘运算,而0与任何实数相乘的结果都是067所以用正整数阶乘的定义是无法推广或推导出0!=1的68即在连乘意义下无法解释“0!=1”69给“0!”下定义只是为了相关公式的表述及运算更方便70 它只是一种定义出来的特殊的“形式”上的阶乘记号,无法用演绎方法来论证71“为什么0!=1”这个问题是伪问题72

Q6:矩阵乘法表达符号问题,累加累乘表达式73

用tex打公式好像只是笔误,省略了下划线http://redoufu.com/。

版权声明:admin 发表于 2021年11月9日 上午8:51。
转载请注明:双求和符号展开以后的表达式是什么,1\n求和公式是什么 | 热豆腐网址之家

相关文章