有问题就有答案
Q1:用二元一次方程组解,详细步骤
解:设:需要A种原料x千克B种原料y千克,根据题意:x+y=1100050x+40y=50(1+10%)x+40(1-15%)y解得:x=6000,y=5000希望我的回答对你有帮助,采纳吧O(∩_∩)O!
Q2:数学一道题
木器店里现有脸盆架和衣架一共100个,340条腿.(脸盆架有4条腿,衣架有3条腿)问脸盆架和衣架各有几个?解:衣架(4*100-340)/(4-3)=60个脸盆架:100-60=40个典型应用题之鸡兔同笼 一,基本问题 "鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解.因此很有必要学会它的解法和思路. 例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只 解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只). 在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数 122-88=34, 有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只. 上面的计算,可以归结为下面算式: 总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法. 还说例1. 如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了 88×4-244=108(只). 每只鸡比兔子少(4-2)只脚,所以共有鸡 (88×4-244)÷(4-2)= 54(只). 说明我们设想的88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式 鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数). 当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了 244-176=68(只). 每只鸡比每只兔子少(4-2)只脚, 68÷2=34(只). 说明设想中的"鸡",有34只是兔子,也可以列出公式 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数). 上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法". 现在,拿一个具体问题来试试上面的公式. 例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支 解:以"分"作为钱的单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚. 现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有 蓝笔数=(19×16-280)÷(19-11) =24÷8 =3(支). 红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔. 对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的"脚数"19与11之和是30.我们也可以设想16只中,8只是"兔子",8只是"鸡",根据这一设想,脚数是 8×(11+19)=240. 比280少40. 40÷(19-11)=5. 就知道设想中的8只"鸡"应少5只,也就是"鸡"(蓝铅笔)数是3. 30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算. 实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,"兔数"为10,"鸡数"为6,就有脚数 19×10+11×6=256. 比280少24. 24÷(19-11)=3, 就知道设想6只"鸡",要少3只. 要使设想的数,能给计算带来方便,常常取决于你的心算本领. 下面再举四个稍有难度的例子. 例3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时 解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份). 现在把甲打字的时间看成"兔"头数,乙打字的时间看成"鸡"头数,总头数是7."兔"的脚数是5,"鸡"的脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了. 根据前面的公式 "兔"数=(30-3×7)÷(5-3) =4.5, "鸡"数=7-4.5 =2.5, 也就是甲打字用了4.5小时,乙打字用了2.5小时. 答:甲打字用了4小时30分. 例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年 解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作"鸡"头数,弟的年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄的年龄是 (25×4-86)÷(4-3)=14(岁). 1998年,兄年龄是 14-4=10(岁). 父年龄是 (25-14)×4-4=40(岁). 因此,当父的年龄是兄的年龄的3倍时,兄的年龄是 (40-10)÷(3-1)=15(岁). 这是2003年. 答:公元2003年时,父年龄是兄年龄的3倍. 例5 蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只 解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成"8条腿"与"6条腿"两种.利用公式就可以算出8条腿的 蜘蛛数=(118-6×18)÷(8-6) =5(只). 因此就知道6条腿的小虫共 18-5=13(只). 也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式 蝉数=(13×2-20)÷(2-1)=6(只). 因此蜻蜓数是13-6=7(只). 答:有5只蜘蛛,7只蜻蜓,6只蝉. 例6 某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人 解:对2道,3道,4道题的人共有 52-7-6=39(人). 他们共做对 181-1×7-5×6=144(道). 由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样 兔脚数=4,鸡脚数=2.5, 总脚数=144,总头数=39. 对4道题的有 (144-2.5×39)÷(4-1.5)=31(人). 答:做对4道题的有31人. 习题一 1.龟鹤共有100个头,350只脚.龟,鹤各多少只 2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副 3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个 4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元,5元,10元各有多少张 5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天 6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段 7.用1元钱买4分,8分,1角的邮票共15张,问最多可以买1角的邮票多少张 二,"两数之差"的问题 鸡兔同笼中的总头数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢 例7 买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张 解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多. (680-8×40)÷(8+4)=30(张), 这就知道,余下的邮票中,8分和4分的各有30张. 因此8分邮票有 40+30=70(张). 答:买了8分的邮票70张,4分的邮票30张. 也可以用任意假设一个数的办法. 解二:譬如,假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分.以"分"作为计算单位,此时邮票总值是 4×20+8×60=560. 比680少,因此还要增加邮票.为了保持"差"是40,每增加1张4分,就要增加1张8分,每种要增加的张数是 (680-4×20-8×60)÷(4+8)=10(张). 因此4分有20+10=30(张),8分有60+10=70(张). 例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天 工程要多少天才能完成 解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有 (150-8×3)÷(10+8)= 7(天). 雨天是7+3=10天,总共 7+10=17(天). 答:这项工程17天完成. 请注意,如果把"雨天比晴天多3天"去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7,例8与上一节基本问题之间的关系. 总脚数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢 例9 鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只 解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是 (100+28÷2)÷(2+1)=38(只). 鸡是 100-38=62(只). 答:鸡62只,兔38只. 当然也可以去掉兔28÷4=7(只).兔的只数是 (100-28÷4)÷(2+1)+7=38(只). 也可以用任意假设一个数的办法. 解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是 4×50-2×50=100, 比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是 (100-28)÷(4+2)=12(只). 兔只数是 50-12=38(只). 另外,还存在下面这样的问题:总头数换成"两数之差",总脚数也换成"两数之差". 例10 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首. 解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差 13×5×4+20=280(字). 每首字数相差 7×4-5×4=8(字). 因此,七言绝句有 28÷(28-20)=35(首). 五言绝句有 35+13=48(首). 答:五言绝句48首,七言绝句35首. 解二:假设五言绝句是23首,那么根据相差13首,七言绝句是10首.字数分别是20×23=460(字),28×10=280(字),五言绝句的字数,反而多了 460-280=180(字). 与题目中"少20字"相差 180+20=200(字). 说明假设诗的首数少了.为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句的首数要比假设增加 200÷8=25(首). 五言绝句有 23+25=48(首). 七言绝句有 10+25=35(首). 在写出"鸡兔同笼"公式的时候,我们假设都是兔,或者都是鸡,对于例7,例9和例10三个问题,当然也可以这样假设.现在来具体做一下,把列出的计算式子与"鸡兔同笼"公式对照一下,就会发现非常有趣的事. 例7,假设都是8分邮票,4分邮票张数是 (680-8×40)÷(8+4)=30(张). 例9,假设都是兔,鸡的只数是 (100×4-28)÷(4+2)=62(只). 10,假设都是五言绝句,七言绝句的首数是 (20×13+20)÷(28-20)=35(首). 首先,请读者先弄明白上面三个算式的由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢 当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事. 例11 有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只 解:如果没有破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是 (400-379.6)÷(1+0.2)=17(只). 答:这次搬运中破损了17只玻璃瓶. 请你想一想,这是"鸡兔同笼"同一类型的问题吗 例12 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分 解一:如果小明第一次测验24题全对,得5×24=120(分).那么第二次只做对30-24=6(题)得分是 8×6-2×(15-6)=30(分). 两次相差 120-30=90(分). 比题目中条件相差10分,多了80分.说明假设的第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少 6+10=16(分). (90-10)÷(6+10)=5(题). 因此,第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对30-19=11(题). 第一次得分 5×19-1×(24- 9)=90. 第二次得分 8×11-2×(15-11)=80. 答:第一次得90分,第二次得80分. 解二:答对30题,也就是两次共答错 24+15-30=9(题). 第一次答错一题,要从满分中扣去5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分). 如果答错9题都是第一次,要从满分中扣去6×9.但两次满分都是120分.比题目中条件"第一次得分多10分",要少了6×9+10.因此,第二次答错题数是 (6×9+10)÷(6+10)=4(题)· 第一次答错 9-4=5(题). 第一次得分 5×(24-5)-1×5=90(分). 第二次得分 8×(15-4)-2×4=80(分). 习题二 1.买语文书30本,数学书24本共花83.4元.每本语文书比每本数学书贵0.44元.每本语文书和数学书的价格各是多少 2.甲茶叶每千克132元,乙茶叶每千克96元,共买这两种茶叶12千克.甲茶叶所花的钱比乙茶叶所花钱少354元.问每种茶叶各买多少千克 3.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次.一连运了若干天,有晴天,也有雨天.其中雨天比晴天多3天,但运的次数却比晴天运的次数少27次.问一连运了多少天 4.某次数学测验共20道题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分.问小华做对了几道题 5.甲,乙二人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分.每人各射10发,共命中14发.结算分数时,甲比乙多10分.问甲,乙各中几发 6.甲,乙两地相距12千米.小张从甲地到乙地,在停留半小时后,又从乙地返回甲地,小王从乙地到甲地,在甲地停留40分钟后,又从甲地返回乙地.已知两人同时分别从甲,乙两地出发,经过4小时后,他们在返回的途中相遇.如果小张速度比小王速度每小时多走1.5千米,求两人的速度. 三,从"三"到"二" "鸡"和"兔"是两种东西,实际上还有三种或者更多种东西的类似问题.在第一节例5和例6就都有三种东西.从这两个例子的解法,也可以看出,要把"三种"转化成"二种"来考虑.这一节要通过一些例题,告诉大家两类转化的方法. 例13 学校组织新年游艺晚会,用于奖品的铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔的4倍.已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元.问三种笔各有多少支 解:从条件"铅笔数量是圆珠笔的4倍",这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组的笔,每支价格算作 (0.60×4+2.7)÷5=1.02(元). 现在转化成价格为1.02和6.3两种笔.用"鸡兔同笼"公式可算出,钢笔支数是 (300-1.02×232)÷(6.3-1.02)=12(支). 铅笔和圆珠笔共 232-12=220(支). 其中圆珠笔 220÷(4+1)=44(支). 铅笔 220-44=176(支). 答:其中钢笔12支,圆珠笔44支,铅笔176支. 例14 商店出售大,中,小气球,大球每个3元,中球每个1.5元,小球每个1元.张老师用120元共买了55个球,其中买中球的钱与买小球的钱恰好一样多.问每种球各买几个 解:因为总钱数是整数,大,小球的价钱也都是整数,所以买中球的钱数是整数,而且还是3的整数倍.我们设想买中球,小球钱中各出3元.就可买2个中球,3个小球.因此,可以把这两种球看作一种,每个价钱是 (1.5×2+1×3)÷(2+3)=1.2(元). 从公式可算出,大球个数是 (120-1.2×55)÷(3-1.2)=30(个). 买中,小球钱数各是 (120-30×3)÷2=15(元). 可买10个中球,15个小球. 答:买大球30个,中球10个,小球15个. 例13是从两种东西的个数之间倍数关系,例14是从两种东西的总钱数之间相等关系(倍数关系也可用类似方法),把两种东西合井成一种考虑,实质上都是求两种东西的平均价,就把"三"转化成"二"了. 例15是为例16作准备. 例15 某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他的平均速度是多少 解:去和回来走的距离一样多.这是我们考虑问题的前提. 平均速度=所行距离÷所用时间 去时走1千米,要用20分钟;回来时走1千米,要用10分钟.来回共走2千米,用了30分钟,即半小时,平均速度是每小时走4千米. 千万注意,平均速度不是两个速度的平均值:每小时走(6+3)÷2=4.5千米. 例16 从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米 解:把来回路程45×2=90(千米)算作全程.去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成"一种"路程,根据例15,平均速度是每小时4千米.现在形成一个非常简单的"鸡兔同笼"问题.头数10+11=21,总脚数90,鸡,兔脚数分别是4和5.因此平路所用时间是 (90-4×21)÷(5-4)=6(小时). 单程平路行走时间是6÷2=3(小时). 从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是 45-5×3=30(千米). 又是一个"鸡兔同笼"问题.从甲地至乙地,上坡行走的时间是 (6×7-30)÷(6-3)=4(小时). 行走路程是3×4=12(千米). 下坡行走的时间是7-4=3(小时).行走路程是6×3=18(千米). 答:从甲地至乙地,上坡12千米,平路15千米,下坡18千米. 做两次"鸡兔同笼"的解法,也可以叫"两重鸡兔同笼问题".例16是非常典型的例题. 例17 某种考试已举行了24次,共出了426题.每次出的题数,有25题,或者16题,或者20题.那么,其中考25题的有多少次 解:如果每次都考16题,16×24=384,比426少42道题. 每次考25道题,就要多25-16=9(道). 每次考20道题,就要多20-16=4(道). 就有 9×考25题的次数+4×考20题的次数=42. 请注意,4和42都是偶数,9×考25题次数也必须是偶数,因此,考25题的次数是偶数,由9×6=54比42大,考25题的次数,只能是0,2,4这三个数.由于42不能被4整除,0和4都不合适.只能是考25题有2次(考20题有6次). 答:其中考25题有2次. 例18 有50位同学前往参观,乘电车前往每人1.2元,乘小巴前往每人4元,乘地下铁路前往每人6元.这些同学共用了车费110元,问其中乘小巴的同学有多少位 解:由于总钱数110元是整数,小巴和地铁票也都是整数,因此乘电车前往的人数一定是5的整数倍. 如果有30人乘电车, 110-1.2×30=74(元). 还余下50-30=20(人)都乘小巴钱也不够.说明假设的乘电车人数少了. 如果有40人乘电车 110-1.2×40=62(元). 还余下50-40=10(人)都乘地下铁路前往,钱还有多(62>6×10).说明假设的乘电车人数又多了.30至40之间,只有35是5的整数倍. 现在又可以转化成"鸡兔同笼"了: 总头数 50-35=15, 总脚数 110-1.2×35=68. 因此,乘小巴前往的人数是 (6×15-68)÷(6-4)=11. 答:乘小巴前往的同学有11位. 在"三"转化为"二"时,例13,例14,例16是一种类型.利用题目中数量比例关系,把两种东西合并组成一种.例17,例18是另一种类型.充分利用所求个数是整数,以及总量的限制,其中某一个数只能是几个数值.对几个数值逐一考虑是否符合题目的条件.确定了一个个数,也就变成"二"的问题了.在小学算术的范围内,学习这两种类型已足够了.更复杂的问题,只能借助中学的三元一次方程组等代数方法去求解. 习题三 1.有100枚硬币,把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中的1分硬币换成等值的5分硬币,硬币总数变成63个.求原有2分及5分硬币共值多少钱 2."京剧公演"共出售750张票得22200元.甲票每张60元,乙票每张30元,丙票每张18元.其中丙票张数是乙票张数的2倍.问其中甲票有多少张 3.小明参加数学竞赛,共做20题得67分.已知做一题得5分,不答得2分,做错一题倒扣3分.又知道他做错的题和没答的题一样多.问小明共做对几题 4.1分,2分和5分硬币共100枚,价值2元,如果其中2分硬币的价值比1分硬币的价值多13分.问三种硬币各多少枚 注:此题没有学过分数运算的同学可以不做. 5.甲地与乙地相距24千米.某人从甲地到乙地往返行走.上坡速度每小时4千米,走平路速度每小时5千米,下坡速度每小时6千米.去时行走了4小时50分,回来时用了5小时.问从甲地到乙地,上坡,平路,下坡各多少千米 6.某学校有12间宿舍,住着80个学生.宿舍的大小有三种:大的住8个学生,不大不小的住7个学生,小的住5人.其中不大不小的宿舍最多,问这样的宿舍有几间 测验题 1.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个. 它一连几天采了112个松籽,平均每天采14个. 问这几天当中有几天有雨 2.有一水池,只打开甲水龙头要24分钟注满水池,只打开乙水龙头要36分钟才注满水池.现在先打开甲水龙头几分钟,然后关掉甲,打开乙水龙头把水池注满.已知乙水龙头比甲水龙头多开26分钟.问注满水池总共用了多少分钟 3.某工程甲队独做50天可以完成,乙队独做75天可以完成.现在两队合做,但是中途乙队因另有任务调离了若干天.从开工后40天才把这项工程做完.问乙队中途离开了多少天 4.小华从家到学校,步行一段路后就跑步.他步行速度是每分钟600 ,跑步速度是每分钟140米.虽然步行时间比跑步时间多4分钟,但步行的距离却比跑步的距离少400米.问从家到学校多远 5.有16位教授,有人带1个研究生,有人带2个研究生,也有人带3个研究生.他们共带了27位研究生.其中带1个研究生的教授人数与带2,3个研究生的教授人数一样多.问带2个研究生的教授有几人 6.某商场为招揽顾客举办购物抽奖.奖金有三种:一等奖1000元,二等奖250元,三等奖50元.共有100人中奖,奖金总额为9500元.问二等奖有多少名 7.有一堆硬币,面值为1分,2分,5分三种,其中1分硬币个数是2分硬币个数的11倍.已知这堆硬币面值总和是1元,问5分的硬币有多少个 第三讲 答案 习题一 1.龟75只,鹤25只. 2.象棋9副,跳棋17副. 3.2分硬币92个,5分硬币23个. 应将总钱数2.99元分成2×4+5=13(份),其中2分钱数占2×4=8(份),5分钱数占5份. 4.2元与5元各20张,10元有10张. 2元与5元的张数之和是 (10×50-240)÷[10-(2+5)÷2]=40(张). 5.甲先做了4天. 提示:把这件工程设为36份,甲每天做3份,乙每天做2份. 6.第一种路段有14段,第二种路段有11段. 第一种路段全长13千米,第二种路段全长9千米,全赛程281千米,共25段,是标准的"鸡兔同笼". 7.最多可买1角邮票6张. 假设都买4分邮票,共用4×15=60(分),就多余100-60=40(分).买一张1角邮票,可以认为40分换1角,要多6分.40÷6=6……4,最多买6张.最后多余4分,加在一张4分邮票上,恰好买一张8分邮票. 习题二 1.语文书1.74元,数学书1.30元. 设想语文书每本便宜0.44元,因此数学书的单价是 (83.4-0.44×30)÷(30+24). 2.买甲茶3.5千克,乙茶8.5千克. 甲茶数=(96×12-354)÷(132+96)=3.5(千克) 3.一连运了27天. 晴天数=(11×3+27)÷(16-11)=12(天) 4.小华做对了16题. 76分比满分100分少24分.做错一题少6分,不做少5分.24分只能是6×4. 5.甲中8发,乙中6发. 假设甲中10发,乙就中14-10=4(发).甲得4×10=40(分),乙得5×4-3×6= 2(分).比题目条件"甲比乙多10分"相差(40-2)-10=28(分),甲少中1发,少4+2=6(分),乙可增5+3=8(分). 28÷(6+8)=2. 甲中10-2=8(发). 6.小张速度每小时6千米,小王速度每小时4.5千米. 王的速度是每小时 注:为了避免分数运算,路程以米为单位,时间以分钟为单位,就可以达到目的.
Q3:数学题,求解答过程
1.两个男孩各骑一辆自行车,从两个相距20英里(1英里(1.6093公里))的地方开始直线骑行,彼此相对。在他们出发的那一刻,一只骑在一辆自行车车把上的苍蝇开始径直飞向另一辆自行车。它一到达另一辆自行车的车把上,就立刻掉头飞回。苍蝇就这样飞来飞去,在两辆自行车的车把之间飞来飞去,直到相遇。如果每辆自行车以每小时10英里的恒定速度行驶,苍蝇以每小时15英里的恒定速度飞行,那么苍蝇总共飞行了多少英里?每辆自行车的速度是每小时10英里,它们将在1小时内在20英里距离的中点相遇。苍蝇以每小时15英里的速度飞行,所以它在一小时内总共飞行了15英里。许多人试图用复杂的方法来解决这个问题。他们计算了苍蝇在两辆自行车车把之间的第一次旅程,然后是回程,等等,并计算了那些越来越短的旅程。但这会涉及到所谓的无穷级数求和,这是一门非常复杂的高等数学。据说在一次鸡尾酒会上,有人问约翰?约翰冯诺依曼(1903 ~ 1957)是20世纪最伟大的数学家之一。)要问这个问题,他想了一下然后给出了正确答案。提问者似乎有点沮丧,他解释说,大多数数学家总是忽略了解决这个问题的简单方法,而是采用了无穷级数求和的复杂方法。冯诺依曼的脸上露出惊讶的神色。“然而,我使用了无穷级数求和的方法,”他解释道。2.有一个渔夫戴着一顶大草帽,在一条河里划船钓鱼。河的速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得往上游划几英里,”他自言自语道。“这里的鱼不想上钩!”就在他开始向上游划的时候,一阵风把他的草帽吹到了船边的水里。然而,我们的渔夫没有注意到他的草帽丢了,仍然向上游划去。直到他划船到船离草帽五英里远时,他才意识到这一点。于是他立即调转船头向下游划去,终于追上了自己漂在水里的草帽。在静水中,渔民们总是以每小时5英里的速度划船。当他划向上游或下游时,他保持速度不变。当然,这不是他相对于河岸的速度。例如,当他以每小时5英里的速度划向上游时,河流会以每小时3英里的速度将他拖向下游,因此他相对于河岸的速度只有每小时2英里。当他划向下游时,他的划水速度和河流的流速会共同作用,使他相对于河岸的速度达到每小时8英里。如果渔夫下午2点丢了草帽,是什么时候找回的?回答:由于河流的流速对划艇和草帽的影响是一样的,所以在解决这个有趣的问题时,可以完全忽略河流的流速。虽然河水在流,河岸在动,但我们可以想象河水完全静止,河岸在动。就划艇和草帽而言,这个假设与上述情况并无不同。既然渔夫离开草帽后划了五英里,他当然要划五英里回到草帽那里。因此,与这条河相比,他总共划了10英里。渔夫以相对于河流每小时5英里的速度划船,所以他必须花2个小时才能完成10英里。于是,下午4点,他发现自己的草帽掉进了水里。这种情况类似于计算地球表面物体的速度和距离的情况。虽然地球在太空中旋转,但这种运动对其表面的所有物体都有相同的影响,所以对于大多数速度和距离的问题,地球的这种运动完全可以忽略不计。在没有风的情况下,它整个往返飞行的平均地面速度(相对于地面速度)是每小时100英里。
让我们假设有一股连续的大风从a市直吹到b市。如果在整个往返飞行过程中,发动机转速与平时完全相同,那么这股风会对往返飞行的平均地速产生怎样的影响?怀特老师辩解道:“这种风根本不会影响平均地速。在从A市飞往B市的过程中,风会加速飞机的速度,但在返回的过程中,风会使飞机的速度减慢等量。”“这似乎有道理,”布朗先生同意道,“但如果风速是每小时100英里。飞机会以每小时200英里的速度从A市飞到B市,但返回时的速度将为零!飞机根本飞不回来!”你能解释这个看似矛盾的现象吗?回答:怀特老师说,风使飞机在一个方向上的速度增加,就像它使飞机在另一个方向上的速度降低一样多。没错。但他说风对整个往返飞行的平均地速没有影响,这是错误的。老师的错误是没有考虑飞机在这两种速度下所花费的时间。逆风飞回来比顺风飞回来要长得多。因此,地速减慢的飞行过程需要更多的时间,因此往返飞行的平均地速低于无风情况下的平均地速。风越大,平均地面速度下降越多。当风速等于或超过飞机的速度时,往返飞行的平均地面速度变为零,因为飞机不能飞回来。4.《孙子算经》是初唐著名的《算经十书》本《数学》教材之一。它由三卷组成。第一卷描述了数数的体系、乘除法则,第二卷举例说明了准备分数和开平的方法,这些都是了解中国古代规划的重要材料。第二卷收集了一些算术难题,“鸡兔同笼”的问题就是其中之一。原标题如下:让野鸡(鸡)和兔子共用一个笼子,上面35头,下面94脚。询问雄兔关于它们的几何图形。原书的解决方案是;设头数为a,脚数为b,那么b/2-a为兔子数,a-(b/2-a)为野鸡数。这个解决方案真的很棒。在解决这个问题时,原著大概采用了方程的方法。如果x是野鸡数,y是兔子数,那么x y=b,2x 4y=a,y=b/2-a,x=a-(b/2-a),根据这个公式,很容易得到原问题的答案:12只兔子,22只野鸡。5.让我们试试80套房的酒店,看看知识如何转化为财富。根据调查,如果我们把日租金定为160元,我们就可以得到全额入住。每增加20元房租,就会损失三位客人。日常服务、维护等。每个已入住客房都需要。支出共计40元。 问题:我们该如何定价才能赚最多的钱? 答案:日租金360元。 虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。 当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。 6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481;="" 综合上述,得18="<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。" 所以,维纳的年龄应是18。="" 把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。 答案:66356| 1.小王从一楼跑去动物园玩,看到大象很悠闲地站在那儿。他忽然联想到曹冲称象的故事,心想曹冲能称出大象的体重,我能不能量出大象的身长呢? 他眉头一皱,计上心来,从口袋里拿出两支铅笔,先手握短铅笔伸直胳膊,用眼睛瞄准铅笔两端正好看到大象的首尾。然后换握长铅笔,瞄准铅笔两端向前走了二十步,正好又看到大象的首尾。他量一量两支铅笔的长分别为8cm和16cm,胳膊长为40cm。每一步长50cm,就很快算出大象身长为4米。小花十分惊奇,问小三是怎么算出来的? 2.跑到四楼需要6秒,问以同样的速度再跑到八楼需要多少秒? 3.一群孩子是兄弟姐妹,其中有姐弟两人在说话,弟弟说自己所拥有的兄弟的人数比姐妹的人数多一个,那么,姐姐所拥有的兄弟比姐妹多几人呢? 4.小明向一个底面积为24X18厘米,高30厘米的水箱注入占其容积三分之二的水。他是一个好奇的男孩,想知道他刚买来的一个铅块的体积。铅块放入水箱后,水面升高到22cm,铅块的体积是多少立方厘米?1、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少? 答案:2元2、假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。 答案:先用5升壶装满后倒进6升壶里, 在再将5升壶装满向6升壶里到,使6升壶装满为止,此时5升壶里还剩4升水 将6升壶里的水全部倒掉,将5升壶里剩下的4升水倒进6升壶里,此时6升壶里只有4升水 再将5升壶装满,向6升壶里到,使6升壶里装满为止,此时5升壶里就只剩下3升水了3、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五千克以上,问他该如何称量。 答案:先称3只,再拿下一只,称量后算差。4、有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背回家, 每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香 蕉? 答案:25根 先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家。5、一天有个年轻人来到王老板的店里买一件礼物,这件礼物成本是18元,售价是21元。 结果是这个年轻人掏出100元要买这件礼物。 王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。 但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。 现在问题是:王老板在这次交易中到底损失了多少钱 ? 答案:97元 6、一个四位数与它的各个位上的数之和是1972,求这个四位数 答案:因为是四位数,和是1972 所以这个四位数的千位上一定是1,因为它不能是0,也不能大于1. 所以这个数就是1xxx。 剩下三个数,即使是1972,9+7+2=18,18+1=19.所以百位上的数只能是9,因为是别的数是不可能得出19xx的。 然后设 个位为数字x,十位为数字y,x、y都为0~9的整数, 则有:1900+10y+x+x+y+10=1972 则有11y+2x=62 x=(62-11y)/2 这样 把0~9的数放到y的位置,就发现 只能是y=4,x=9 所以就是19491.小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲? 2.小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么? 3.小军说:“我昨天去钓鱼,钓了一条无尾鱼,两条无头的鱼,三条半截的鱼。你猜我一共钓了几条鱼?”同学们猜猜小军一共钓了几条鱼? 4.6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里? 5.一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢? 6.王某从甲地去乙地,1分钟后,李某从乙地去甲地。当王某和李某在途中相遇时,哪一位离甲地较远一些? 7.时钟刚敲了13下,你现在应该怎么做? 8.在广阔的草地上,有一头牛在吃草。这头牛一年才吃了草地上一半的草。问,它要把草地上的草全部吃光,需要几年? 9.妈妈有7块糖,想平均分给三个孩子,但又不愿把余下的糖切开,妈妈怎么办好呢? 10.公园的路旁有一排树,每棵树之间相隔3米,请问第一棵树和第六棵树之间相隔多少米? 11.把8按下面方法分成两半,每半各是多少?算术法平均分是____,从中间横着分是____,从中间竖着分是____. 12.一个房子4个角,一个角有一只猫,每只猫前面有3只猫,请问房里共有几只猫? 13.一个房子4个角,一个角有一只猫,每只猫前面有4只猫,请问房里共有几只猫? 14.小军、小红、小平3个人下棋,总共下了3盘。问他们各下了几盘棋?(每盘棋是两个人下的) 15.小明和小华每人有一包糖,但是不知道每包里有几块。只知道小明给了小华8块后,小华又给了小明14块,这时两人包里的糖的块数正好同样多。同学们,你说原来谁的糖多?多几块? 答案: 1.20只,包括手指甲和脚指甲 2.因为他付给售货员40元,所以只找给他2元; 3.0条,因为他钓的鱼是不存在的; 4.6里,36里; 5.只要教小狗转过身子用后脚抓骨头,就行了。 6.他们相遇时,是在同一地方,所以两人离甲地同样远; 7.应该修理时钟; 8.它永远不会把草吃光,因为草会不断生长; 9.妈妈先吃一块,再分给每个孩子两块; 10.15米; 11.4,0,3. 12.4只; 13.5只; 14.2盘; 15.原来小华糖多;14-8=6块,因为多给了6块两人糖的块数正好同样多,所以原来小华比小明多12块。
Q4:一元一次方程 X(1+40%) * 0.8 - X = 15 此类方程该怎样解决比较合理?
1.4X * 0.8-X=15 1.12 X-X=15 0.12 X=15 X=125
Q5:(1/x+1/40)*15=1怎么解?
括号中的值是十五分之一,即1/x 1/40=1/15,即1/x=1/24,待定系数法是x=24。
Q6:趣味数学题10道,难点。不要简单。
1.在河的东岸有三只老虎、三头牛,和一条船,它们准备过河。若这条船同时只能乘载两个(可以是两只老虎、两头牛或一只老虎和一头牛),且只有一只老虎和一头牛会滑船。无论在任何地方,只要老虎的数目比牛的数目多,老虎就会把牛吃掉,请你设计个方案,使这群动物安全渡到河西岸。(注:只能让那只会滑船的虎或牛当船夫,除了滑船的,就只能再坐一虎或一牛了。)2.现有大小两个正方形的纸片,试通过合适的方法剪切,并拼接成一个大正方形.(纸不能有剩余)3.从昨天午夜(0:00时)到今天的上午十点整这十个小时内,时针与分针共成了几次直角?4.有6X6的网格(即一个网格有六行六列),试把从1至36的自然数分别填入网格中,使每横行、竖行和斜行(即对角线)每六个数的和都相等.5.⊿ABC中,AB=BC,且∠ABC=100°,点E在AB上,点D在AC上,且CE平分∠ACB,∠CBD=20°.试求:∠CED的度数.6.⊿ABC中,AB=AC,∠A=20°.D为AB上一点,E为AC上一点,试求:∠DEB的度数.7.已知圆O(点O为圆心),试只用圆规把这个圆分为四等份.8.现有一个没有圆心的圆,试只用圆规找出这个圆的圆心.(注:只用圆规)9.已知一个直角三角形三边的长都是自然数,且一直角边为12,试求这个三角形的周长.10.如图,有两个正方形,请指导每个正方形分成两块,两个正方形共四块,使这四块的形状和大小都相同,并且每一块中都有A、B、C、D四个字母.