11000万的数从95万数到103万数有哪些,数字精确到万位怎么算

文章 3年前 (2021) admin
0

Q1:11000万的数从95万数到103万数有哪些

为什么是两个?标题中有几个数字应该是错的:从[0]到9的9个数字前加00,从10到99的90个数字前加0。那么,从000到999,这1000个数字都是“三位数”。常见的数字是1000 * 3=3,000减去相加的000的3,数字加一位数和两位数。最后=3000-3-108 4=2893受访者:尼敏仁仕祝大家新年快乐_。

Q2:四年级数学题

四年级下册数学应用题练习1、图书室有故事书98本,今天借出46本,还回25本。现在图书室有故事书多少本? 解答:98-(46-25)=77本2、一件儿童上衣48.5元,一条长裤比上衣便宜9.8元,一条裙子又比长裤贵2.5元。这条裙子多少钱? 解答:48.5-9.8+2.5=41.2元3、爸爸带小明去滑雪,乘缆车上山用了4分钟,缆车每分钟行200米。滑雪下山用了20分钟,每分钟行70米。滑雪比乘缆车多行多少米? 解答:20×70-4×200=600千米4、某县城到省城的公路长160千米。一辆汽车高速路的速度是80千米/时,走普通公路的速度是40千米/时。从县城去省城走高速路比普通公路节省多少时间? 解答:160÷40-80÷40=2小时5、大同乡中心小学在荒山上植树,2002年共植树356棵,2003年植树3次,每次植树140棵。哪一年植的树多?多多少棵? 解答:140×3=420棵 420-356=64棵 2003年多。6、李伯伯家养了42只鸡,养鸭的只数是鸡的一半。李伯伯家一共养鸡、鸭多少只? 解答:42+42÷2=63只7、书架上有两层书,共144本。如果从下层取出8本放到上层去,两层书的本数就相同。书架上、下层各有多少本书? 解答:上层 :144÷2-8=64本 下层64+8+8=80本8、学校运来大米850千克,运了3车,还剩100千克。平均每车运多少千克? 解答:(850-100)÷3=250千克9、王老师要批改48篇作文,已经批改了12篇。如果每小时批改9篇,还要几小时能批改完? 解答:(48-12)÷9=4小时10、动物园里的一头大象每天180千克食物,一只熊猫2天吃72千克食物。大象每天吃的食物是熊猫的几倍? 解答:180÷(72÷2)=511、水果店运来苹果、香蕉各8箱。苹果每箱25千克,香蕉每箱18千克。一共运来水果多少千克? 解答:8×(25+18)=344千克12、小林身高124厘米,是表妹身高的2倍,而舅舅身高是表妹的3倍。舅舅身高是多少厘米? 解答:124÷2×3=186cm13、学校组织植树,一共有25个小组,每个小组种了5棵树苗。购买树苗花了1250元,每棵树苗多少钱? 解答:1250÷(25×5)=10元14、小丽家每天要买一盒牛奶和一袋豆浆。牛奶每袋2.40元,比豆浆贵1.80元。小丽家一个星期买牛奶和豆浆要花多少钱? 解答:(2.4-1.8+2.4)×7=21元15、张英、李强和肖红参加跳高比赛,张英跳了1.1米,比李强低了0.15米。肖红比李强跳得低0.09米,肖红跳了多高? 解答:1.1+(0.15-0.09)=1.16米16、地球表面积是5.1亿平方千米,其中陆地面积是1.49亿平方千米。海洋面积比陆地面积多多少亿平方千米? 解答:5.1-1.49-1.49=2.12平方千米17、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗? 解答:100÷5+1=21棵18、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远? 解答:(36-1)×6=210米19、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟。 解答:5-1=4下 4×8=32分20、学校楼前摆放了一个方阵花坛。这个花坛的最外层每边各摆放8盆花,最外层共摆了多少盆花? 解答:(8-1)×4=28盆21、啄木鸟7天能吃4515只害虫,山雀一周能吃1155只害虫。啄木鸟平均每天比山雀多吃害虫多少只? 解答:4515÷7-1155÷7=480只22、一个长方形的长是0.54米,比宽多8厘米,这个长方形的周长是多少米? 解答:8cm=0.08m (0.54+0.54-0.08)×2=2米23、一个足球48.30元,一个篮球54.20元,王老师用150元买足球、篮球各一个,应找回多少元? 解答:150-(48.3+54.2)=47.5元24一把椅子35.4元,比一张桌子便宜16.2元,小明买一套桌椅,共用多少元? 解答:35.4+16.2+35.4=87元25、某公园上午有游人180人,下午有270人。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员? 解答:270÷30-180÷30=3名

Q3:小学毕业数学题

毕业考试是小学学习的全方位综合考试。有时候,一些话题可以通过带着假设的思考,从难懂、复杂变成简单。用假设法解题,首先要通过假设改变题目的条件,然后用已知的条件进行计算,这样才能巧妙的找到解。以这个标题为例供参考。比如一所小学上学期有750名学生,这学期男生增加了1/6,女生减少了1/5。现在有710名学生。这学期有多少男孩和女孩?分析:假设本学期女生人数增加1/6而不是减少1/5,应该有750(1 1/6)=875,比实际人数(875-710)=165多。这165人假设女生人数也增加了1/6,而实际女生人数减少了1/5。所以此时165人对应女生的分数是(1/5 1/6)=11/30。解决办法是:上学期女生:[750(1 1/6)-710](1/5 1/6)=450本学期女生:450 (1-1/5)。

Q4:自主招生比高考难吗?

如果想通过自主招生进入大学,只能是本省高职院校才能参加自主招生后直接录取,其他的还是需要高考的,自主招生只是一种招生的手段,通过后会有减分录取等优惠政策。  高职自主招生的考试,由试点高校根据本校培养目标和学科专业的要求,自主决定考试具体方案,组织对考生进行文化课和综合素质测评,其中文化课笔试科目一般不得少于3门,综合素质测试原则上不采用单纯笔试的形式。高职院校的自主招生考试报名时间安排在3-4月,考试时间安排在3-4月,5月底前就能完成录取并将名单报省考试院审核备案。已由高职自主招生录取的考生,不得再参加当年6月份举行的高考和高职单考单招;未录取的考生可继续参加当年高考及高职单考单招。  所以可以先去参加自主招生,没有通过再进行高考。

Q5:小学数学练习题

Q6:数学高手进,数论题,200分送上

[编辑本段]数学的猜想 对于任何一个自然数A, (1)a.如果A为偶数,就除以2 b.如果A为奇数,就乘以3加上1 得数记为B (2)将B代入A重新进行(1)的运算 若干步后,得数为1. 这个猜想就叫做角谷猜想,目前没有反例,也没有证明. 但也有许多人曾经尝试去求证这个问题:[编辑本段]一个错误的证明 最简单的证明角谷(3n+1)猜想的方法 因为任何偶数都能变成2^a或一个奇数乘2^b。前者在不停的除以2之后必定为1,因为它们只有质因数2。而后者则只能剩下一个奇数,我们可以把偶数放在一边不谈。 现在只剩下奇数了。 我们假设一个奇数m,当他进行运算时,变成3m+1。如果这个猜想是错误的话,那么就有(3m+1)/2^c=m,且m不等于1。我们尝试一下: 当c=1时,3m+1=2m,,,m=-1,不符合,舍去; 当c=2时,3m+1=4m,,,m=1,不符合,舍去; 当c=3时,3m+1=8m,,,m=0.2,不符合,舍去; 当c=4时,3m+1=16m,,,m=1/13,不符合,舍去; …………………… 可见,能推翻角古猜想的数只在1或以下的范围,所以没有数能推翻这个猜想,所以这个猜想是正确的。[编辑本段]错误分析 我不敢苟同以下这种所谓的证明: “我们假设一个奇数m,当他进行运算时,变成3m+1。如果这个猜想是错误的话,那么就有(3m+1)/2^c=m,且m不等于1。我们尝试一下: 当c=1时,3m+1=2m,,,m=-1,不符合,舍去; 当c=2时,3m+1=4m,,,m=1,不符合,舍去; 当c=3时,3m+1=8m,,,m=0.2,不符合,舍去; 当c=4时,3m+1=16m,,,m=1/13,不符合,舍去; 。。。。。。 可见,能推翻角古猜想的数只在1或以下的范围,所以没有数能推翻这个猜想,所以这个猜想是正确的。” 要知道(3m+1)/2^c=m这个等式左右两边的m是不一样的,虽然两个m都是奇数,但此m非彼m!上面无非就是想说一个奇数乘以3再加1必定可以被2的n次方除尽,当然n到底是多大要看实际情况而定。然而这种表示方法是绝对错误的!不信大家可以试一试,左边代入任意奇数m,右边得出的m绝大多数都是跟左边代入任意奇数m不同的。还有就是这个证明明显存在前后矛盾,前面假设一个奇数m,后面却得出m=0.2、m=1/13这样的结果,难道0.2、1/13这些就是所谓的奇数?连两个m都分不清,更何况是证明呢?大家不要再犯这样的低级错误了呀,脚踏实地才是真。[编辑本段]角谷猜想的一个推广 角谷猜想又叫叙古拉猜想。它的一个推广是克拉茨问题,下面简要说说这个问题: 50年代开始,在国际数学界广泛流行着这样一个奇怪有趣的数学问题:任意给定一个自然数x,如果是偶数,则变换成x/2,如果是奇数,则变换成3x+1.此后,再对得数继续进行上述变换.例如x=52,可以陆续得出26,13,40,20,10,5,16,8,4,2,1.如果再做下去就得到循环: (4,2,1).再试其他的自然数也会得出相同的结果.这个叫做叙古拉猜想. 上述变换,实际上是进行下列函数的迭代 { x/2 (x是偶数) C(x)= 3x+1 (x是奇数) 问题是,从任意一个自然数开始,经过有限次函数C迭代,能否最终得到循环(4,2,1),或者等价地说,最终得到1?据说克拉茨(L.Collatz)在1950年召开的一次国际数学家大会上谈起过,因而许多人称之为克拉茨问题.但是后来也有许多人独立地发现过同一个问题,所以,从此以后也许为了避免引起问题的归属争议,许多文献称之为3x+1问题. 克拉茨问题吸引人之处在于C迭代过程中一旦出现2的幂,问题就解决了,而2的幂有无穷多个,人们认为只要迭代过程持续足够长,必定会碰到一个2的幂使问题以肯定形式得到解决.正是这种信念使得问题每到一处,便在那里掀起一股"3x+1问题"狂热,不论是大学还是研究机构都不同程度地卷入这一问题.许多数学家开始悬赏征解,有的500美元,有的1000英镑. 日本东京大学的米田信夫已经对240大约是11000亿以下的自然数做了检验.1992年李文斯(G.T.Leavens)和弗穆兰(M.Vermeulen)已经对5.6*1013的自然数进行了验证,均未发现反例.题意如此清晰,明了,简单,连小学生都能看懂的问题,却难到了20世纪许多大数学家.著名学者盖伊(R.K.Guy)在介绍这一世界难题的时候,竟然冠以"不要试图去解决这些问题"为标题.经过几十年的探索与研究,人们似乎接受了大数学家厄特希(P.Erdos)的说法:"数学还没有成熟到足以解决这样的问题!"有人提议将3x+1问题作为下一个费尔马问题. 下面是我对克拉茨问题的初步研究结果,只是发现了一点点规律,距离解决还很遥远. 克拉茨命题:设 n∈N,并且 f(n)= n/2 (如果n是偶数) 或者 3n+1 (如果n是奇数) 现用f1(n)表示f(n),f2(n)=f(f(n)),...fk(n)=f(f(...f(n)...)). 则存在有限正整数m∈N,使得fm(n)=1.(以下称n/2为偶变换,3n+1为奇变换,并且称先奇变换再偶变换为全变换) 克拉茨命题的证明 引理一:若n=2m,则fm(n)=1 (m∈N) 证明:当m=1时,f(n)=f(2)=2/2=1,命题成立,设当m=k时成立,则当m=k+1时,fk+1(n)=f(fk(2k+1))= =f(2)=2/2=1.证毕. 引理二:若n=1+4+42+43+...+4k=(4k+1-1)/(4-1) (k∈N),则有f(n)=3n+1=4k+1=22k+2,从而f2k+3(n)=1. 证明:证明是显然的,省略. 引理三:若n=2m(4k+1-1)/(4-1) (m∈N), 则有fm+2k+3(n)=1. 证明:省略. 定理一:集合 O={X|X=2k-1,k∈N} 对于变换f(X)是封闭的. 证明:对于任意自然数n,若n=2m,则fm(n)=1,对于n=2k,经过若干次偶变换,必然要变成奇数,所以我们以下之考虑奇数的情形,即集合O的情形.对于奇数,首先要进行奇变换,伴随而来的必然是偶变换,所以对于奇数,肯定要进行一次全变换.为了直观起见,我们将奇数列及其全变换排列如下: k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 2k-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 1 3k-1 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 2 3k-2 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 3 3k-1 2 5 8 11 14 17 20 23 26 29 32 35 38 4 3k-2 1 4 7 10 13 16 19 5 3k-1 2 5 8 6 3k-2 1 4 7 3k-1 2 8 3k-2 1 第一行(2k-1)经过全变换(3(2k-1)+1)/2=3k-1变成第二行,实际上等于第一行加上一个k,其中的奇数5,11,...6k-1又回到了第一行.以下各行是等差数列3k-2,3k-1交错排列.由于最终都变成了奇数,所以集合O对于变换f(X)是封闭的. 定理二:任何奇自然数经过若干次变换都会变成1. 证明: 我们看到 奇数经过全变换变成为3k-1型数,3k-1型奇数经过全变换有一半仍然变成3k-1型奇数,而另一半3k-1型偶数经过除以2有一半变成为3k-2型奇数,而3k-2型奇数经过全变换又变成为3k-1型数.换句话说不可能经过全变换得到3k-2型数. 下面我们只研究奇数经过全变换的性质,因为对于其他偶数经过若干次偶变换,仍然要回到奇数的行列里来. 我们首先证明奇数经过若干次全变换必然会在某一步变成偶数. 设2a0-1是我们要研究的奇数,它经过全变换变成3a0-1,假设它是一个奇数并且等于2a1-1,2a1-1又经过全变换变成为3a1-1=2a2-1,3a2-1=2a3-1,...3ak-1-1=2ak-1,所以a1=(3/2)a0,a2=(3/2)a1,...ak=(3/2)ak-1. 所以最后ak=(3/2)ka0,要使ak是整数,可令a0=2kn,(n是奇数).于是ak=3kn.则从2a0-1经过若干次全变换过程如下: 2k+1n-1 -> 3*2kn-1 -> 32*2k-1n-1 -> 33*2k-2n-1 ->... -> 3k+1n-1 (偶数). 然后我们证明经过全变换变成偶数的奇数一定大于该偶数经过若干偶变换之后得到的奇数. 设3k+1n-1=2mh (h为奇数),我们要证明 h<2*3kn-1: h=(2*3kn-1+3kn)/2ma+b,而这是显然的. 定义:以下我们将称呼上述的连续全变换紧接着连续的偶变换的从奇数到另外一个奇数的过程为一个变换链. 接着我们证明奇数经过一个变换链所得的奇数不可能是变换链中的任何中间结果,包括第一个奇数. 若以B(n)表示奇数n的变换次数,m是n经过变换首次遇到的其他奇数,则有 定理三:B(n)=k+1+B(m),其中k是满足3n+1=2km的非负整数. 证明:n经过一次奇变换,再经过k次偶变换变成奇数m,得证. 举例来说,B(15)=2+B(23)=2+2+B(35)=2+2+2+B(53)=2+2+2+5+1+B(5)=2+2+2+5+1+5=17 原始克拉茨 二十世纪30年代,克拉茨还在上大学的时候,受到一些著名的数学家影响,对于数论函数发生了兴趣,为此研究了有关函数的迭代问题. 在1932年7月1日的笔记本中,他研究了这样一个函数: F(x)= 2x/3 (如果x被3整除 或者 (4x-1)/3 (如果x被3除余1)或者 (4x+1)/3 (如果x被3除余2) 则F(1)=1,F(2)=3,F(3)=2,F(4)=5,F(5)=7,F(6)=4,F(7)=9,F(8)=11,F(9)=6,...为了便于观察上述迭代结果,我们将它们写成置换的形式: 1 2 3 4 5 6 7 8 9 ... 1 3 2 5 7 4 9 11 6 ... 由此观察到:对于x=2,3的F迭代产生循环(2,3) 对于x=4,5,6,7,9的F迭代产生循环(5,7,9,6,4). 接下来就是对x=8进行迭代,克拉茨在这里遇到了困难,他不能确知,这个迭代是否会形成循环,也不知道对全体自然数做迭代除了得到上述两个循环之外,是否还会产生其他循环.后人将这个问题称为原始克拉茨问题.现在人们更感兴趣的是它的逆问题: G(x)= 3x/2 (如果x是偶数)或者 (3x+1)/4 (如果x被4除余1)或者 (3x-1)/4 (如果x被4除余3) 不难证明,G(x)恰是原始克拉茨函数F(x)的反函数.对于任何正整数x做G迭代,会有什么样的结果呢? 经计算,已经得到下列四个循环: (1),(2,3),(4,6,9,7,5),(44,66,99,74,111,83,62,93,70,105,79,59). 因为G迭代与F迭代是互逆的,由此知道,F迭代还应有循环(59,79,105,70,93,62,83,111,74,99,66,44). G迭代还能有别的循环吗?为了找到别的循环,人们想到了下面的巧妙方法: 由于G迭代使后项是前项的3/2(当前项是偶数时)或近似的3/4(当前项是奇数).如果G迭代中出现循环,比如迭代的第t项at与第s项as重复(t<s):at=as.但 as/as-1,as-1/as-2,...at+1/at 或等于3/2,或者近似于3/22,因而 1=as/at=as/as-1*as-1/as-2*...at+1/at≈3m/2n 这里 m=s-t,m 1) 五 a=2 b=2^m-1 c=1 d=1 六 a=2 b=c=d=2^m-1 以上m为任意自然数 最简单的情况: a=b=c=d=2 a=2 b=1 c=1 d=1 a=2 b=1 c=-1 d=0 原题只是五的当m=2情况 据说中国有许多人会证明了原题 原题只是扩展的一个及其微小的部分 以上数据全部成立 没有一个反例 这道题非常短小 却隐含着非常丰富的数学思想的...需要用到的东西非常多 那些定理 公式都非常完美 可以表达非常普遍的数学规律 这是一个数学问题而不是什么猜想 绝对成立的 此题重在培养学生的独立思考问题的能力 以及逆向思维... 其实这道题非常简单 不知道是不是整体证法了 对以上情况的整体证法第一步: 先构造一个2元函数 这个函数揭示了一个秘密 :把能够被a整除的全部的自然数都转化成不能被a的自然数 f(x,y) 有a 五 a=2 b=2^m-1 c=1 d=1 用数学归纳 整除规律 因式分解 自然数拆分...证明: (2^(mn)-1)/(2^n-1)=e 当m和n为自然数时,e为奇数 m=1 A1=(1) m=2 A2=(1,5) m=3 A3=(1,9,11) m=4 A4=(1,17,19,23) m=5 A5=(1,33,35,37,39) m=6 A6=(1,65,67,71,73,79) ... ... ... 的组合无限数列A()的通项公式 各小项都不能被2的m次方-1整除 这个组合数列是非常简单的 只是无数个等差数列的首项....

版权声明:admin 发表于 2021年11月5日 上午8:25。
转载请注明:11000万的数从95万数到103万数有哪些,数字精确到万位怎么算 | 热豆腐网址之家

相关文章