(4x)^2/(1-x)^2×1000/100=1.3求x

文章 3年前 (2021) admin
0

Q1:(4x)^2/(1-x)^2×1000/100=1.3求x

这种斜分数线,分子还可以确定,但分母管到哪里,后面1000/100在不在分母?

Q2:谁帮偶出点数学题啊?

一、分数除法1、小华看一本书,每天看16页,5天后还剩下全书的3/5没看,这本书有多少页?思维导航:小华5天看了16×5=80(页),因为5天后还剩下全书的3/5没看,说明已经看了的80页占这本书的1—3/5=2/5。 解: 16×5÷(1-3/5)=200(页) 答:这本书有200页。2、25比30少几分之几?30比25多几分之几?思维导航:1、25比30少几分之几? 25比30少30—25=5,5占30的几分之几? 此时30为“单位1”即 5÷30=1/6 2、30比25多几分之几? 30比25多30—25=5,5占25的几分之几? 此时25为“单位1”即 5÷25=1/5 答:25比30少1/6,30比25多1/5。3、某车间男工人数比女工人数多3/5,女工人数比男工人数少几分之几?思维导航:男工人数比女工人数多3/5,这里把女工人数看作“单位1”。 那么男工人数为1+3/5=8/5 求女工人数比男工人数少几分之几?这里把男工人数看作“单位1” 即女工人数比男工人数少 (8/5—1)÷8/5=3/8。4、食堂运来一批大米,第一天了全部的2/5,第二天吃了余下的1/3,第三天吃了又余下的3/4,这时还剩下15千克,食堂运来大米多少千克?思维导航:最后剩下的15千克是“又余下的” (1—3/4=1/4),用这样的方法逆推可求出食堂运来的大米数量。 15÷(1—3/4)÷(1-1/3)÷(1-2/5)=150(千克) 答:食堂运来大米150千克。5、小华看一本故事书,第一天看的比全书的1/6多6页,第二天看的比全书的1/8少8页,最后还剩下172页,这本故事书一共有多少页?思维导航:多6页,少8页和剩下的172页,这些量与分数中包含和不包含的关系是本题解题的关键。画图表示,这个数量关系就很清楚了。1-1/6-1/8对应的页数显然是(172+6-8)页 解:(172+6-8)÷(1-1/6-1/8)=240(页)。 答:这本故事书一共有240页。思维训练:1、一辆汽车没小时行驶60千米,5小时后行了全程的1/3,全程有多少千米?2、甲、乙两个工程队合修一条路,甲工程队每天修35米,乙工程队每天修50米,3天后修了这段路的3/4,这段路全长多少米?3、甲数比乙数多1/3,乙数比甲数少几分之几?4、一盆金鱼,红鱼比黑鱼多3/8,黑鱼比红鱼少几分之几?5、某年人口普查,农村人口比城镇人口多3/7,城镇人口比农村人口少几分之几?6、某校学生参加数学竞赛,参赛学生占全校人数的2/25,未获奖的占参赛人数的3/4,其中一等奖占获奖人数的1/5。一等奖有2人,全校有学生多少人?7、妈妈买了一些苹果,第一天吃去了1/3又1/3个,第二天吃去了剩下的1/4又1/4个,,第三天吃去再剩下的1/3又1/3个,这时剩下3个苹果,问妈妈买了多少个苹果?每天各吃了几个苹果?8、早上水缸放满了水,白天用去其中的1/5,傍晚又用去了27升,晚上用去剩下水的1/10,最后剩下水是半缸多1升,问早上放入多少升水?二、长方体:1、在个长方体中,相交于一个顶点的三条棱的长度和是27厘米,它的棱长和是多少厘米?思维导航:在长方体中,有4条长、4条宽、4条高,相交于同一个顶点的三条棱分别是长、宽、高。已知:长+宽+高=27厘米那么:4长+4宽+4高=4×(长+宽+高)=4×27=108厘米2、 一个长方体无盖纸盒,长35厘米,宽30厘米,高12厘米,这个纸盒的表面积是多少平方分米?思维导航:这个长方体纸盒无盖,只有5个面,表面积就是这5个面面积之和,最后注意单位要化统一。35×30+35×12×2+30×12×2=1050+840+720=2610(平方厘米)=26.1(平方分米)3、 在棱长为5厘米的正方体木块的每个面的中心挖一个洞,洞口是边长为1厘米的正方形,洞深1厘米。挖洞后木块的表面积是多少平方厘米?思维导航:正方体的6个面上都挖了洞,我们只要算出一个面上的表面积,再乘6,就可以算出正方体的表面积,在一个面上挖掉了一个面积为1×1=1(平方厘米)的正方形,但又增加了5个1平方厘米的面积,相当于每个面的表面积增加4平方厘米,因此一个面的表面积为29×6=174(平方厘米)思维训练:一、填空题。1、一个长方体的棱长之和是64厘米,它的宽和高相等,长是6厘米,高与宽都是( )厘米。2、一个长2分米,宽3分米,高1分米的长方体,它的占地面积最小是( )平方分米,最大是( )平方分米。3、正方体的棱长扩大到原来的4倍,它的表面积扩大到原来的( )倍。4、将棱长是4分米的两个正方体拼成一个长方体,拼成的长方体的表面积是( )5、一个长方体纸盒,长3分米,宽2分米,高 1分米。它的底面是( )平方分米,四个侧面的总和是( )平方分米, 表面积是( )平方分米。二、解决问题。1、学校有一间会客室长10米,宽8米,高3米,粉刷顶棚和四壁,扣除门窗面积22平方米,粉刷的面积是多少平方米?2、有一长方体木块,长7厘米,宽3厘米,高5厘米,把它切成两个完全一样的小长方体,表面积最多增加多少平方厘米?3、▲做10节高120厘米,长和宽都是10厘米的铁皮烟囱,至少需要铁皮多少平方厘米?4、▲一个游泳池,长50米,宽20米,深2米。要在四壁和底面镶上瓷砖,镶瓷砖部分的面积是多少平方米?在游泳池1米深处的四壁用红漆画一条直线,这条直线长多少米?1、甲、乙两车同时从A、B两地相向而行。甲车每小时行 27千米,乙车每小时行29千米,3/5小时后两车会相遇吗?思维导航:根据四年级知识学生知道: 行驶路程=速度和×时间 可列式 (27+29)×3/5=33.6(千米) 通过分析讨论,学生发现没有告诉A、B两地的距离,所以有两种情况:三、分数乘法1、如果A、B两地的距离大于33.6千米,则两车不能相遇。2、如果A、B两地的距离小于或等于33.6千米,则两车能相遇。 本题是分数乘法在实际生活中的应用,结合具体问题,分析不同情况结果也不相同。2、36吨化肥,用去1/4后,又用去1/4吨,还剩多少吨?思维导航:本题的关键在于理解“1/4”和“1/4吨”。 “1/4”是指化肥总数的1/4,也就是36吨的1/4,即36×1/4。 “1/4吨”指的是用去的实际数量。 解: 36—36×1/4—1/4 =36-9—1/4 =26 3/4(吨) 答:还剩26 3/4吨3、有一摞纸,共120张,第一次用去了它的3/5,第二次用去了它的1/6,两次共用多少张纸?思维导航: 找准“单位1”,明确数量关系。 “第一次用去它的3/5”指求“120的3/5是多少” “第二次用去它的1/6”指求“120的1/6是多少” 解法一: 第一次用去的张数+第二次用去的张数=用去的总张数 120×3/5+120×1/6 =72+20 =92(张) 答:两次共用92张纸。 解法二: 总张数×(第一次用去的份数+第二次用去的份数)=用去总张数 120×(3/5+1/6) =120×23/30 =92(张) 答:两次共用92张纸。4、判断;一根绳子,剪去3/4,还剩1/4米,这句话对吗?思维导航: 分三种情况 一绳长为1米,剪去3/4,还剩1/4米,此说法正确。 二绳长大于1米,剪去3/4,剩下的大于1/4米。 三绳长小于1米,剪去3/4,剩下的小于1/4米。思维训练:1、小王和小张合打一份书稿,小李1分钟打70字,小张1分钟打100字,3/4小时后他们能打完吗?2、甲、乙两工程队合修一条路,甲队每天修65米,乙队每天修75米,两个工程队7/15个月能修完吗?3、一段9米长的绳子,第一次截去它的1/2,第二次截去1/2米,还剩下多少米?4、有30箱肥皂,每箱重1/2吨,用汽车运走了这些肥皂的1/3,汽车运走了多少吨肥皂?5、一根4米长的木料,第一次截去它的1/2,第二次截去剩下的1/2,第三次截去1/2米,还剩下多少米?6、某筑路队修一条240米的路,第一天修了这条路的1/3,第二天修了这条路的1/4,第一天比第二天多修多少米?7、食堂买来2袋土豆,第一袋重23千克,第二袋重25千克,中午吃去了总数的5/12,吃了多少千克?8、某校参加全国硬笔书法比赛,低年级参赛的有120人,中年级参赛的有96人,高年级参赛的有64人,其中参赛人数的1/7获奖,获奖的有多少人?

Q3:谁帮偶出点数学题啊?

这种斜分数线,分子还可以确定,但分母管到哪里,后面1000/100在不在分母?

Q4:五年级数学奥数

这种斜分数线,分子还可以确定,但分母管到哪里,后面1000/100在不在分母?

Q5:一道数学题~~

这种斜分数线,分子还可以确定,但分母管到哪里,后面1000/100在不在分母?

Q6:数学竞赛

先给一点吧有书的一、选择题: 1、已知数轴上三点A、B、C分别表示有理数 、1、-1,那么 表示( ) (A)A、B两点的距离 (B)A、C两点的距离 (C)A、B两点到原点的距离之和 (D)A、C两点到原点的距离之和 2、王老伯在集市上先买回5只羊,平均每只 元,稍后又买回3只羊,平均每只 元,后来他以每只 的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是( ) (A) (B) (C) (D)与 、 的大小无关 3、两个正数的和是60,它们的最小公倍数是273,则它们的乘积是( ) (A)273 (B)819 (C)1199 (D)1911 4、某班级共48人,春游时到杭州西湖划船,每只小船坐3人,租金16元,每只大船坐5 人,租金24元,则该班至少要花租金( ) (A)188元 (B)192元 (C)232元 (D)240元 5、已知三角形的周长是 ,其中一边是另一边2倍,则三角形的最小边的范围是( ) (A) 与 之间 (B) 与 之间 (C) 与 之间 (D) 与 之间 6、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的容积之比为 :1,另一个瓶子中酒精与水的容积之比是 :1,把两瓶溶液混在一起,混合液中酒精与水的容积之比是( ) (A) (B) (C) (D) 二、填空题: 7、已知 , , ,且 > > ,则 = ; 8、设多项式 ,已知当 =0时, ;当 时, , 则当 时, = ; 9、将正偶数按下表排列成5列: 第1列 第2列 第3列 第4列 第5列 第一行 2 4 6 8 第二行 16 14 12 10 第三行 18 20 22 24 第四行 32 30 28 26 …… … … … … 根据表中的规律,偶数2004应排在第 行,第 列; 10、甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是__________米; 11、有人问李老师:“你班里有多少学生?”,李老师说:“我班现在有一半学生在参加数学竞赛,四分之一的学生在参加音乐兴趣小组,七分之一的学生在阅览室,还剩三个女同学在看电视”。则李老师班里学生的人数是 ; 12、如图,B、C、D依次是线段AE上三点,已知AE=8.9cm,BD=3cm,则图中以A、B、C、D、E这五个点为端点的所有线段长度之和等于 。 13、某个体服装经销商先以每3件160元的价钱购进一批童装,又以每4件210元的价钱购进比上一次多一倍的童装. 他想把这两批童装全部转手,并从中获利20%,那么,他需要以每3件______元出手。 14、已知x、y满足 ,则代数式 的值为________。 15、已知12 + 22 +32 +……+ n2 = 16 n(n+1)(2n+1),则22 + 42 +62 +……+1002 =________。 三、解答题: 16、求不等式 的整数解。 17、钟表在12点时三针重合,问经过多少分钟秒针第一次将分针和时针的夹角(指 锐角)平分?(用分数表示) 18、甲、乙两人沿着圆形跑道匀速跑步,他们分别从直径AB两端同时反向起跑第一次相遇时离A点100米,第二次相遇时离B点60米,求圆形跑道的总长。 19、五个整数a、b、c、d、e,它们两两相加的和按从小到大顺序排分别是183,186,187,190,191,192,193,194,196,x。已知a<b<c<d196. (1) 求a、b、c、d、e和x的值; (2) 若y=10x+4,求y的值。 “希望杯”数学邀请赛培训题1 一.选择题(以下每题的四个选择支中,仅有一个是正确的) 1.-7的绝对值是( ) (A)-7 (B)7 (C)-1/7 (D)1/7 2.1999- 的值等于( ) (A)-2001 (B)1997 (C)2001 (D)1999 3.下面有4个命题: ①存在并且只存在一个正整数和它的相反数相同。 ②存在并且只存在一个有理数和它的相反数相同。 ③存在并且只存在一个正整数和它的倒数相同。 ④存在并且只存在一个有理数和它的倒数相同。 其中正确的命题是:( ) (A)①和② (B)②和③ (C)③和④ (D)④和① 4.4ab c 的同类项是( ) (A)4bc a (B)4ca b (C) ac b (D) ac b 5.某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( ) (A)20% (B)25% (C)80% (D)75% 6. , , , 四个数中,与 的差的绝对值最小的数是( ) (A) (B) (C) (D) 7.如果x=― , Y=0.5,那么X ―Y ―¬¬¬¬¬¬¬2X的值是( ) (A)0 (B) (C) (D) ― 8.ax+b=0和mx+n=0关于未知数x的同解方程,则有( ) (A)a +m >0. (B)mb≥an. (C)mb≤an. (D)mb=an. 9.(-1)+(-1)-(-1)×(-1)÷(-1)的结果是( ) (A)-1 (B)1 (C)0 (D)2 10.下列运算中,错误的是( ) (A)2X +3X =5X (B)2X -3X =-1 (C)2X •3X =6X (D)2X ÷4X = 11.已知a<0,化简 ,得( ) (A) 2 (B) 1 (C) 0 (D) -2 12.计算(-1) +(-1) ÷|-1|的结果是( ) (A)0 (B)1 (C)-1 (D)2 13.下列式子中,正确的是( ) (A)a •a =a . (B)(x ) =x . (C)3 =9. (D)3b•3c=9bc. 14.-|-3|的相反数的负倒数是( ) (A)- (B) (C)-3 (D)3 15.十月一日亲朋聚会,小明统计大家的平均年龄恰是38岁,老爷爷说,两年前的十月一日也是这些人相聚,那么两年前相聚时大家的平均年龄是( )岁。 (A)38 (B)37 (C)36 (D)35 16.若a a + b. (C)ac > ab (B)cb ab 19.不等式 < 1的正整数解有( )个。 (A)2 (B)3 (C)4 (D)5 20.某计算机系统在同一时间只能执行一项任务,且完成该任务后才能执行下一项任务,现有U,V,W的时间分别为10秒,2分和15分,一项任务的相对等待时间为提交任务到完成该任务的时间与计算机系统执行该任务的时间之比,则下面四种执行顺序中使三项任务相对等候时间之和最小的执行是( )。 (A)U,V,W. (B)V,W,U (C)W,U,V. (D)U,W,V 21.如图,线段AD,AB,BC和EF的长分别为1,8,3,2,5和2,记闭合折线AEBCFD的面积为S,则下面四个选择中正确的是( ) (A) S=7.5 (B) S=5.4 (C) 5.4<S<7.5 (D)4<S<5.4. 22.第一届希望杯的参赛人数是11万,第十届为148万,则第届参赛人数的平均增长率最接近的数值是( )。 (A)21.8%. (B) 33.5% (C)45% (D) 50% 23.已知 X和YI满足3X+4Y=2,X-Y<1,则( )。 (A) (B) (C) (D) 24.下面的四句话中正确的是( ) A.正整数a和b的最大公约数大于等于a。 B.正整数a和b的最小公倍数大于等于ab。 C.正整数a和b的最大公约数小于等于a。 D.正整数a和b的公倍数大于等于ab。 25.已知a≤2,b≥-3,c≤5,且a-b+c=10,则a+b+c的值等于( )。 (A)10 (B)8 (C)6 (D)4 “希望杯”数学邀请赛培训题2 26. 的相反数除-6的绝对值所得的结果是___。 27.用科学记数法表示:890000=____。 28.用四舍五入法,把1999.509取近似值(精确到个位),得到的近似数是__。 29.已知两个有理数-12.43和-12.45。那么,其中的大数减小数所得的差是__。 30.已知 与 是同类项,则 =__。 31. 的负倒数与-|4|的倒数之和等于__。 32.近似数0,1990的有效数字是__。 33.甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__。 34.已知式子 +□= ,则□中应填的数是__。 35.( ÷ )÷ ___。 36.已知角a的补角等于角a的3.5倍,则角a等于__度。 37.已知方程(1.9x-1.1)-( )=0.9(3 x-1)+0.1,则解得x的值是_。 38.甲楼比丙楼高24.5米, 乙楼比丙楼高15.6米, 则乙楼比甲楼低___米. 39.如图,四个小三角形中所填四个数之和等于零,则这四个数绝对值之和等于__。 40.关于x的方程3mx+7=0和2 x+3n=0是同解方程,那么 x-2y=1999 41.方程组 的解是___。 2x-y=2000 42.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是__米。 43.父亲比小明大24岁,并且1998年的年龄是小明2000年年龄的3倍,则小明1999年时的年龄是__岁。 44.已知 和 是同类项,则 ___。 45. ,并且 = 。则 46. 都是二位的正整楼,已知它们的最小公倍数是385,则 的最大值是__。 47.甲瓶食盐水浓度为8%,乙瓶食盐水浓度为12%,两瓶食盐水共重1000克,把甲、乙两瓶食盐后的浓度是10.08%,则甲瓶食盐水重___克。 48.如图所示的五角星形中共可数出__个三角形。 49.已知 则 =_____。 50.已知数串1,1,2,3,5,8,13,……,从第3个数起每个数都等于它前面相邻的两个数之和,那么,数串中第1999个数被3除所得的余数是_。 “希望杯”数学邀请赛培训题3 51.将一个长为 ,宽为 的矩形分为六个相同的小矩形, 然后在矩形中画出形如字母M的图形,记字母M的 图形面积为S,则S=__。 52.有理数-3,+8,- ,0.1,0, ,-10.5,-0.4中,所有正数的和填在下式的〇中,所有负数的和填在正式下式的□中,并计算出下式的结果填在等号左边的横线上。 〇÷□=__。 53.填数计算:〇中填入最小的自然数,△中填入最小的非负数,□中填入不小于-5且小于3的整数的个数,将下式的计算结果写在等号右边的横线上。(〇+□)×△=__。 54.从集合 中取出三个不同的数,可能得到的最大乘积填在□中,可-能得到的最小乘积填在〇中并将下式计算的结果写在等号右边的横线上。-(-□)÷〇=__。 55.计算: 56.有这样一个衡量体重是否正常的简单算法。一个男生的标准体重(以公斤为单位)是其身高(以厘米为单位)减去110。正常体重在标准体重减标准体重的10%和加标准体重的10之间。已知甲同学身高161厘米,体重为W,如果他的体重正常,则W的公斤数的取值范围是_____. 57.若A是有理数,则 的最小值是___. 58.计算: . 59.有理数 在数轴上的位置如图所示,化简 60.X是有理数,则 的最小值是_____. 61.如图,C是线段AB的中点,D是线段AC的 中点,已知图中所有线段的长度之和为23, 则线段AC的长度为_____. 62.设 和 为非负整数,已知 和 的最小公倍数为36, 63.甲、乙同在一百米起跑线处,甲留在原地未动,乙则以每秒7米的速度跑向百米终点,5秒后甲听到乙的叫声,看到乙跌倒在地,已知声音的传播速度是每秒340米,这时乙已经跑了_____.米(精确到个位) 64.现有一个代数式 时该 数式的值为 时该代数式的值为 则 65.如图,一个面积为50平方厘米的正方形与另 一个小正方形并排放在一下起,则 的 面积是__平方厘米。 66.在六位数25 52中 皆是大于7的数码,这个六位数被11整除,那么,四位数 。 67.今有1分,2分和5分的硬币共计15枚,共值5角2分,则三种硬币个数的乘积是___。 68.数学小组中男孩子数大于小组总人数的40%小于50%,则这个数学小组的成员至少有___人。 69.用三个数码1和三个数码2可以组成__个不同的四位数。 70.在三位数中,百位比十位小,并且十位比个位小的数共有__个。 71.在100--1999这一千九百个自然数中,十位与个位数字相同的共有__个。 72,有人问毕达哥拉斯,他的学校中有多少学生,他回答说:“一半学生学数学,四分之一学音乐,七分之一正休息,还剩三个女学生。”问毕达哥拉斯的学校中有多少学生? 答:毕达哥拉斯的学校中有__个学生。 73.丢番图(二世纪时希腊数学家)的基碑上的墓志铭记载:“哲人丢番图,在此处埋葬,寿命相当长,六分之一是童年,十二分之一是少年,又过了生命的七分之一,娶了新娘,五年后生了个儿郎,不幸儿子只活了父亲寿命的一半,先父四年亡,丢番图到底寿多长?” 答:丢番图的寿命是__岁。 74.有人问某儿童,有几个兄弟、有几个姐妹,他回答说:“有几个兄弟,就有几个姐妹。”再问他妹妹,有几个兄弟、几个姐妹,她回答说:“我的兄弟是姐妹的两倍。”问他们兄弟、姐妹各几人? 答:他们有兄弟__人,姐妹__人。 75.甲对乙说:“我像你这样大岁数的那年,你的罗数等于我今年岁数的一半,当你到我这样大岁数的时候,我的岁数是你今年岁数的二倍少7岁。”两人现年各多少岁?答:甲现年__岁,乙现年__。 “希望杯”数学邀请赛培训题4 解答题 76.一辆公共汽车由起点站到终点站(含起点站与终点站在内)共行驶8个车站。已知前6个车站共上车100人,除终点站外共下车总计80人,问从前6站上车而在终点下车的乘客共有多少人? 77.已知代数式 ,当 时的值分别为1-,2,2,而且 不等于0,问当 时该代数式的值是多少? 78.如图,在一环行轨道上有三枚弹子同时沿逆时针方向运动。已知甲于第10秒钟时追上乙,在第30秒时追上丙,第60秒时甲再次追上乙,并且在第70秒时再次追上丙,问乙追上丙用了多少时间? 79.有理数 均不为0,且 设 试求代数式 2000之值。 80.已知 为整数, 如果 ,请你证明: 。

版权声明:admin 发表于 2021年10月22日 上午2:56。
转载请注明:(4x)^2/(1-x)^2×1000/100=1.3求x | 热豆腐网址之家

相关文章