有问题就有答案
- 1 Q1:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+......+1/(48*49*50)=?
- 2 Q2:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+.+1/(48*49*50)=?
- 3 Q3:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(9*10*11)简便运算
- 4 Q4:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+1/(4*5*6)+1/(5*6*7)+1/(6*7*8)+1/(7*8*9)+1/(8*9*10)
- 5 Q5:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(9*10*11)简便运算
- 6 Q6:s=1/(1*2*3)+1/(2*3*4)+1/(3*4*5)……1/(15*16*17)
Q1:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+......+1/(48*49*50)=?
每个人都知道这是一个分裂的术语。1/(1 * 2 * 3)=1/1-1/2-1/31/(2 * 3 * 4)=1/2-1/3-1/4.同样的公式=1/1-1/49-1/50=4800/。
Q2:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+.+1/(48*49*50)=?
1/(1×2×3)+1/(2×3×4)+1/(4×5×6)、、、、+1/(48×49×50)= 1/2 *[(3-1)/(1*2*3)+(4-2)/(2*3*4).+(50-48)/(48*49*50)] =1/2 * [1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4).+1/(48*49)-1/(49*50)] =1/2*(1/2-1/2450)=306/1225
Q3:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(9*10*11)简便运算
1/(1*2*3) 1/(2*3*4) 1/(3*4*5) .1/(9*10*11)=1/2[1/(12)-1/(23) 1/(23)-1/(34) .1/(910)-1/(1011)]如果您满意,请点击[满意答案]。如果你不满意,请指出来,我会改正的!希望你能给我一个正确的答案!祝你学习进步!
Q4:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+1/(4*5*6)+1/(5*6*7)+1/(6*7*8)+1/(7*8*9)+1/(8*9*10)
1/(1*2*3) 1/(2*3*4) 1/(3*4*5) 1/(4*5*6) 1/(5*6*7) 1/(6*7*8) 1/(7*8*9) 1/(8*9*10)=1/2*(1/1*2-1/2*3) 1/2*(1/2*3-1/3*4) .1/2*(1/8*9-1/9*10)=1/2*(1/1*2-1/9*10)=1/2*44/90=11/45
Q5:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(9*10*11)简便运算
1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(9*10*11)=1/2[1/(1×2)-1/(2×3)+1/(2×3)-1/(3×4)+...+1/(9×10)-1/(10×11)]=1/2×[1/(1×2)-1/(10×11)]=1/2×(1/2-1/110)=1/2×54/110=27/110 公式:1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)] 明教为您解答,如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!希望还您一个正确答复!祝您学业进步!
Q6:s=1/(1*2*3)+1/(2*3*4)+1/(3*4*5)……1/(15*16*17)
解:观察:1/[n(n ^ 1)(n ^ 2)]=1/2{ 1/n-2/(n ^ 1)1/(n ^ 2)},所以原公式=1/2 [1-2/21/31/2-2/31/41。